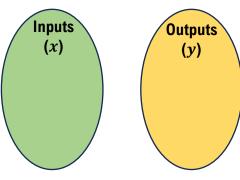
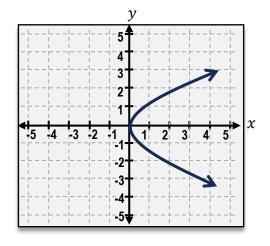
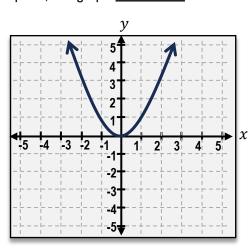

TOPIC: FUNCTIONS Relations and Functions


- Relation: A connection between _____ & ____ values.
 - Graphically, they are represented as _____ pairs (x, y)
- Function: A special type of relation where each input has at most _____ output.

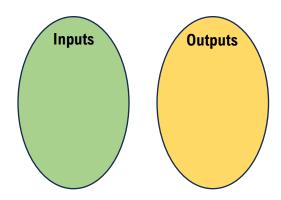


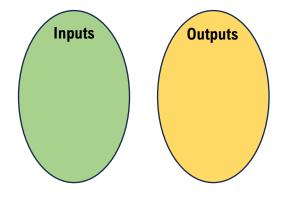


[FUNCTION | NOT A FUNCTION]

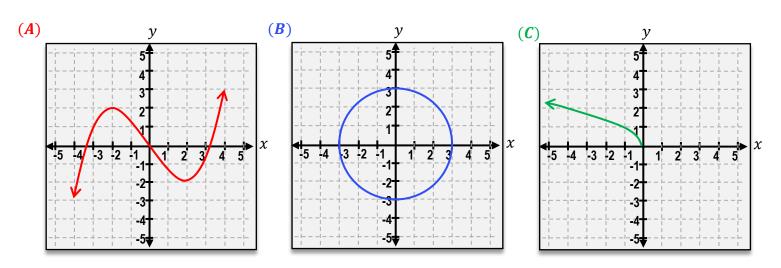
[FUNCTION | NOT A FUNCTION]

- A way to quickly determine if a graph is a function or not is the **Vertical Line Test**:
 - If you can draw any vertical line that passes through more than 1 point, the graph _____ a function.

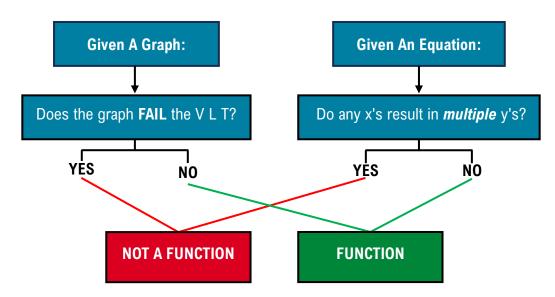



[FUNCTION | NOT A FUNCTION]

[FUNCTION | NOT A FUNCTION]


<u>PRACTICE</u>: State the inputs and outputs of the following relation. Is it a function? $\{(-3,5),(0,2),(3,5)\}$

PRACTICE: State the inputs and outputs of the following relation. Is it a function? $\{(2,5), (0,2), (2,9)\}$



PROBLEM: Determine below which of the graphs are functions (select all that apply).

Verifying if Equations are Functions

• When verifying **equations** as functions, you should _____ as a first step.

EXAMPLE.	Determine if	each of the	equations	helow is	function	or not a function.
	. Determine n	Cacil Of the	equations	DCIOM 19 C	i iuniction,	of flot a full-tion.

(A) y+4=3x

x	у
-1	
0	
1	
2	

If equation is a _____, then it is a

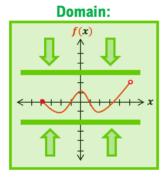
[FUNCTION | NOT A FUNCTION].

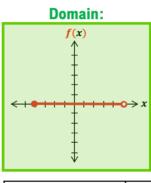
(B)

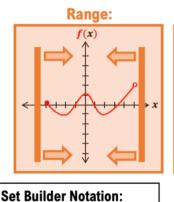
$$x^2 + y^2 = 25$$

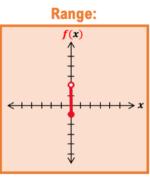
x	у
-1	
0	
1	
2	

If equation has an _____ power of y, then it is a

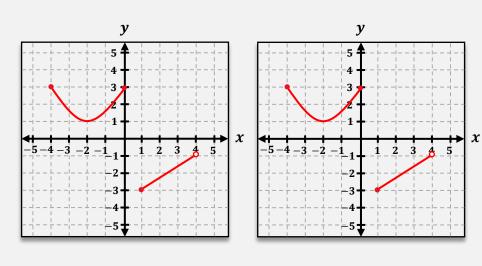

[FUNCTION | NOT A FUNCTION].


- If an equation is a function, we can write it using function _____ (replace ____ with _____).
 - We can write y = 3x 4 as ____ = 3x 4


TOPIC: FUNCTIONS	
<u>PRACTICE</u> : Is the equation $y = -2x + 10$ a function	? If so, rewrite it in function notation and evaluate at $f(3)$.
<u>PRACTICE</u> : Is the equation $y^2 + 2x = 10$ a function?	If so, rewrite it in function notation and evaluate at $f(-1)$.

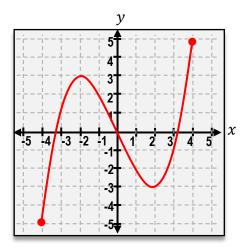

Finding The Domain And Range Of A Graph

- The domain of a graph is the allowed ____-values, and the range of a graph is the allowed ____-values.
 - To find the **domain** of a graph, "squish" to the ____-axis. To find the range, "squish" to the ____-axis.



Interval Notation:	Set Builder Notation:		
Domain = [-4, 5)	$Domain = \{x \mid -4 \le x < 5\}$		
Range = [-1, 2)	$ Range = \{y -1 \le x < 2\}$		

$$Domain = \{x | -4 \le x < 5\}$$


- The [,], ≤, ≥ symbols mean we [INCLUDE | DON'T INCLUDE] the value.
- The (,), <, > symbols mean we [INCLUDE | DON'T INCLUDE] the value.

EXAMPLE: Determine the domain & range of the following graph below. Express the answer using interval notation.

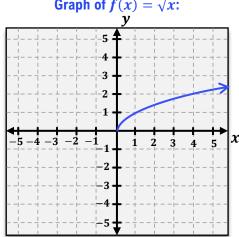
• When we have multiple intervals or "jumps" in the graph, use the union symbol (____).

PRACTICE: Find the domain and range of the following graph (write your answer using interval notation).

Finding the Domain of an Equation

- You may need to find the **domain** (allowed x-values) of a function when given an equation instead of a graph.
 - First determine *restrictions* by identifying values that ______ the function. Two common situations:

1) x inside of a Square Root


Domain: *x*-values that don't make the inside of the square root ______.

Graph of $f(x) = \sqrt{x}$:

EXAMPLE: Find the domain of the function $f(x) = \sqrt{x}$ without graphing. Express using interval notation.

Restriction: x-values that make $\sqrt{\ }$ negative: _____, therefore

Domain:

2) x in the Denominator of a Fraction

Domain: x-values that don't make the denominator ______.

EXAMPLE: Find the domain of the function $f(x) = \frac{2}{x-5}$ using interval notation.

Restriction: x-values that make denominator 0: _____, therefore

Domain:

<u>PRACTICE</u>: Find the domain of $f(x) = \sqrt{x+4}$. Express your answer using interval notation.

<u>PRACTICE</u>: Find the domain of $f(x) = \frac{1}{x^2 - 5x + 6}$. Express your answer using interval notation.