TOPIC: CHI-SQUARE INDEPENDENCE TEST

Independence Test

- ◆ Recall: Two variables are **Independent** if neither one affects the other.
 - ► An **Independence Test** is a G.O.F. Test where "claimed" dist. = E's of the ____ variables (assumed *independent*).

EXAMPLE

Using the following data of the heights of students at a local high school, you find $\chi^2=3.32$. Test if height & grade are independent using $\alpha=0.05$.

	5'1-5'6	5'7-6'0	6'1-6'6
9th	0 = 40 E = 34.43	0 = 27	0 = 10
	E = 34.43	E = 29.17	E = 12.91
10th	0 = 32 E = 37.12	0 = 34	0 = 17
	E = 37.12	E = 31.45	E = 13.92

Recall	Goodness of Fit Test	New	Independence Test		
1) Hypothesis	H_0 : Obs. freq's match claimed dist. H_a : Obs. freq's DO NOT match claimed dist.	H_0 : Variables a H_a : Variables a	are are		
2) Test Stat	$E = \frac{n}{k} \text{ (claimed prob's SAME)}$ $E = np \text{ (claimed prob's DIFF)}$ $\chi^2 = \sum_{k=1}^{n} e^{-kx}$	$\frac{(O-E)^2}{E}$	$E = \frac{row\ total \cdot col\ total}{Grand\ Total}$ $\chi^2 = 3.32$		
3) P-value	df = k - 1 $P-value = Are$	χ^2 a "beyond" χ^2	$df = (r-1)(c-1)$ $df = \underline{\qquad} r = \text{\# of rows}$ $c = \text{\# of columns}$		
4) Conclusion	$P\text{-value} = \underline{\hspace{1cm}}$ Because P -value [< >] α , we [REJECT FAIL TO REJECT] H_0 . There is [ENOUGH NOT ENOUGH] evidence that the variables are dependent.				
Criteria	Random Samples? Observed freq. for each category? $E \geq 5$ for each category?				

TOPIC: CHI-SQUARE INDEPENDENCE TEST

EXAMPLE

The table below shows the results from a drug trial for a new ADHD medication. Using $\alpha=0.01$, test if symptom improvement is independent of whether a participant received the placebo.

Random Samples? \square Observed freq. for each category? \square $E \geq 5$ for each category? \square H_0 :

		Group		
		Placebo	Non-Placebo	Total
Symptoms	Improved	18	37	55
	Not Improved	30	15	45
	Total	48	52	100

 H_a : $\chi^2 =$

r = #rows = ___ c = #col's = ___ df = ___ = __

Recall $E = \frac{row \ total \cdot col \ total}{Grand \ Total}$ $\chi^2 = \sum \frac{(O - E)^2}{E}$ df = (r - 1)(c - 1)

(Independence Test)

P-value = _____

Because P-value [< | >] α , we [REJECT | FAIL TO REJECT] H_0 . There is [ENOUGH | NOT ENOUGH] evidence...