

TOPIC: TWO VARIANCES – TI-84

Hypothesis Tests for Two Variances Using a TI-84

- ◆ To perform a hypothesis test for two variances using a calculator, use the **2-SampFTest** function.

EXAMPLE

Do a Hyp. Test to see if there's evidence for $\sigma_1 > \sigma_2$ using $\alpha = 0.05$ in the following scenarios:

(A) $s_{x_1} = 5.72$, $n_1 = 150$ $s_{x_2} = 4.91$, $n_2 = 175$

H_0 : _____ H_a : _____ P-value: _____

Because P-value [$< | >$] α , we [**REJECT** | **FAIL TO REJECT**] H_0 .

There is [**ENOUGH** | **NOT ENOUGH**] evidence to suggest...

(B)

Sample Data						
Sample 1:	25.3	13.85	19.1	22.68	16.7	24.59
Sample 2:	13.2	12.4	15.6	12.98	19.9	20.11

H_0 : _____ H_a : _____ P-value: _____

Because P-value [$< | >$] α , we [**REJECT** | **FAIL TO REJECT**] H_0 .

There is [**ENOUGH** | **NOT ENOUGH**] evidence to suggest...

HOW TO: Hyp Test on TI-84 2 Variances

- 1) If given data, enter in **L1**, **L2**

(**STAT**, **1:EDIT...**)

- 2) **STAT** **>** **TESTS**

E: 2-SampFTest

- 3) If given data: If given s_1, n_1, \dots :

DATA	STATS
List1: L1	Sx1:
List2: L2	n1:
Freq1: 1	Sx2:
Freq2: 1	n2:

$\sigma_1: \neq \sigma_2 < \sigma_2 > \sigma_2$

Calculate **Draw**

TOPIC: TWO VARIANCES – TI-84

PRACTICE

A historian is comparing the variation in weights of rare coins from different time periods. The data from two independent random samples is shown below. Using a 0.05 significance level and a graphing calculator, test the claim that the variation of weights before the 1900s is greater than after the 1900s.

H_0 : _____ H_a : _____ P -value: _____

Because P -value [$<$ | $>$] α , we [**REJECT** | **FAIL TO REJECT**] H_0 .

There is [**ENOUGH** | **NOT ENOUGH**] evidence to suggest...

HOW TO: Hyp Test on TI-84 2 Variances

- 1) If given data, enter in L1, L2
(**STAT**, **1:EDIT...**)
- 2) **STAT** **> TESTS**
E: 2-SampFTest
- 3) If given data: If given s_1, n_1, \dots :

DATA	STATS
List1: L1	Sx1:
List2: L2	n1:
Freq1: 1	Sx2:
Freq2: 1	n2:

 $\sigma_1: \neq \sigma_2 < \sigma_2 > \sigma_2$
Calculate **Draw**

TOPIC: TWO VARIANCES – TI-84

EXAMPLE

A fitness researcher is studying whether variation in resting heart rates (RHR) differs between non-athletes and athletes. Two independent random samples were collected from each group, shown below. Use $\alpha = 0.05$ to test the claim that the variation in RHR of non-athletes is higher than in athletes.

Resting Heart Rates: Non-Athletes vs. Athletes											
Non-Athletes:	95	66	72	58	94	62	58	79	91	96	68
Athletes:	58	54	53	68	52	61	59	74			

$$H_0: \text{_____} \quad H_a: \text{_____} \quad P\text{-value:} \text{_____}$$

Because $P\text{-value } [< | >] \alpha$, we [**REJECT** | **FAIL TO REJECT**] H_0 .

There is [**ENOUGH** | **NOT ENOUGH**] evidence to suggest...

 HOW TO: Hyp Test on TI-84
2 Variances

- 1) If given data, enter in L1, L2
(**STAT**, 1:EDIT...)
- 2) **STAT** > **TESTS**
E: 2-SampFTest
- 3) If given data: If given s_1, n_1, \dots :

DATA	STATS
List1: L1	Sx1:
List2: L2	n1:
Freq1: 1	Sx2:
Freq2: 1	n2:

 $\sigma_1: \neq \sigma_2 < \sigma_2 > \sigma_2$
Calculate **Draw**