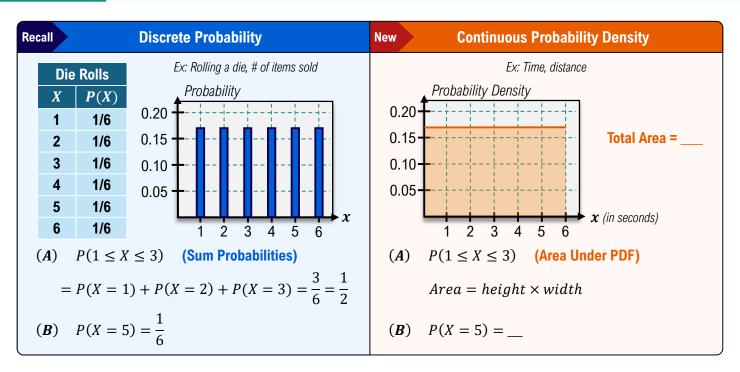
TOPIC: INTRO TO CONTINUOUS RANDOM VARIABLES

Uniform Distribution

- ◆ Recall: Discrete R.V. cannot be broken down further. Continuous R.V. can be broken down further.
 - ► To find probabilities for CRV's, calculate the _____ under the **probability density fcn**. P(X = specific #) =__.

EXAMPLE

Use the graphs below to find (A) $P(1 \le X \le 3) \& (B) P(X = 5)$.



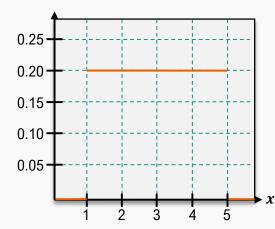
◆ The **Uniform Distribution** has the ______ probability density for *every* value of *X*.

TOPIC: INTRO TO CONTINUOUS RANDOM VARIABLES

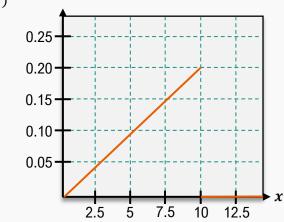
PRACTICE

Determine if each curve (in orange) is a valid **probability density function** (i.e. if the total area under the function = 1).

(A)



(B)

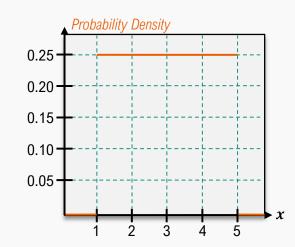


PRACTICE

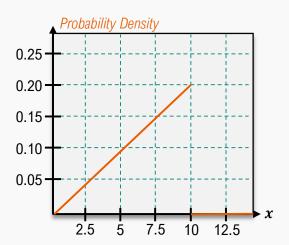
Shade the area corresponding to the probability listed, then find the probability.

(A)

$$P(2 < X < 4)$$



(B)



TOPIC: INTRO TO CONTINUOUS RANDOM VARIABLES

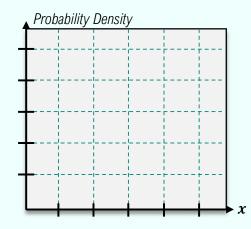
EXAMPLE

A local call center tracks the response time for customer service agents to answer incoming calls during peak hours. Data shows that the time it takes an agent to answer a call is uniformly distributed between 2 seconds and 12 seconds.

(A) Sketch the probability density function for:

X =response time (in seconds) to answer a call.

(B) Find the probability that a call is answered in 5-9 seconds.



PRACTICE

A commuter train arrives at a station once every 30 minutes. If a passenger arrives at the station at a random time, what is the probability that the passenger will wait less than 10 minutes?

