

TOPIC: HYPOTHESIS TESTING USING CRITICAL VALUES

Hypothesis Test: Critical Values & the Rejection Region

- ◆ A **critical value** (found from α) is the _____ between an "expected" test statistic & an "unusual" one.

P-value

z or $t \rightarrow$ find P -val \rightarrow compare to α

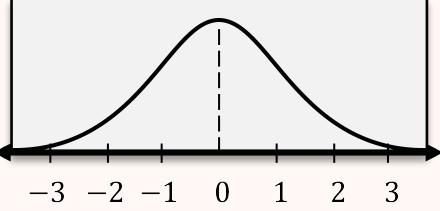
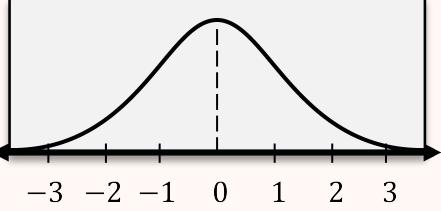
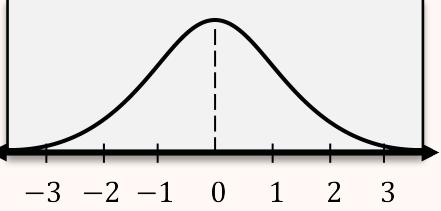
Critical Value

$\alpha \rightarrow$ find Critical Value \rightarrow compare to z or t

- If the test statistic lies in the **rejection region** (area _____ critical value), then we *reject* H_0 .

EXAMPLE

You're a researcher looking at how the current mean age of students in your university has changed from last year, when the mean age was 23. So, you get a sample of students & calculate a test statistic. In each of the following situations, use $\alpha = 0.05$ to find the critical value & determine if the given test stat (z) is in the rejection region.

Hypothesis Test		
Left Tail	Two Tail	Right Tail
<p>"Students now are younger..."</p> $H_0: \mu = 23; H_a: \mu < 23$  <p>Critical Val(s): $z_\alpha =$ Test Stat: $z = -2.00$</p> <p>z [IN NOT IN] Rejection Region [REJECT FTR] H_0</p>	<p>"Students now have a different mean age..."</p> $H_0: \mu = 23; H_a: \mu \neq 23$  <p>Critical Val(s): $-z_{\alpha/2} =$ $z_{\alpha/2} =$ Test Stat: $z = -1.00$</p> <p>z [IN NOT IN] Rejection Region [REJECT FTR] H_0</p>	<p>"Students now are older..."</p> $H_0: \mu = 23; H_a: \mu > 23$  <p>Critical Val(s): $z_\alpha =$ Test Stat: $z = 0.8$</p> <p>z [IN NOT IN] Rejection Region [REJECT FTR] H_0</p>

TOPIC: HYPOTHESIS TESTING USING CRITICAL VALUES

PRACTICE

Mark 'TRUE' or 'FALSE' for each of the following.

(A) The test statistic & the critical value are the same thing.

[TRUE | FALSE]

(B) The critical value is the boundary of the rejection region.

[TRUE | FALSE]

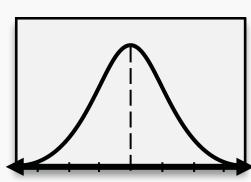
(C) You should always reject H_0 if the test statistic is greater than the critical value.

[TRUE | FALSE]

PRACTICE

Use α to find the critical value(s), then determine if the given test statistic is in the rejection region.

(A) $H_0: \mu = 7.5; H_a: \mu > 7.5$
 $\alpha = 0.01; z = 2.17$

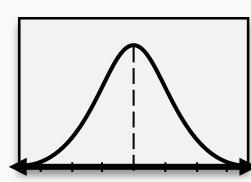


Test is [LEFT | TWO | RIGHT] -tailed

Critical Value(s):

Test stat [IN | NOT IN] rejection region.

(B) $H_0: p = 0.64; H_a: p < 0.64$
 $\alpha = 0.10; z = -1.53$

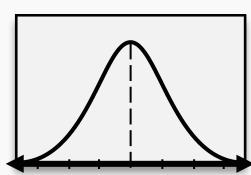


Test is [LEFT | TWO | RIGHT] -tailed

Critical Value(s):

Test stat [IN | NOT IN] rejection region.

(C) $H_0: \mu = 98.6; H_a: \mu \neq 98.6$
 $\alpha = 0.05$
 $t = 2.41; df = 17$

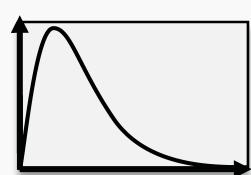


Test is [LEFT | TWO | RIGHT] -tailed

Critical Value(s):

Test stat [IN | NOT IN] rejection region.

(D) $H_0: \sigma^2 = 0.3; H_a: \sigma^2 > 0.3$
 $\alpha = 0.05$
 $\chi^2 = 61.7; df = 51$



Test is [LEFT | TWO | RIGHT] -tailed

Critical Value(s):

Test stat [IN | NOT IN] rejection region.

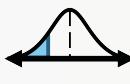
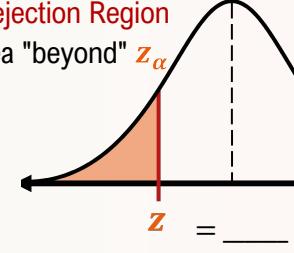
TOPIC: HYPOTHESIS TESTING USING CRITICAL VALUES

Hypothesis Test for Mean Using the Critical Value

- ◆ The **critical value method** for hyp. tests uses all the same steps as the *P*-value method, except step _____.

EXAMPLE

A soda company claims its cans contain 355 mL on average, but a sample of 50 cans has a mean of 352 mL. Test whether the mean volume is less than claimed using $\alpha = 0.01$ & $\sigma = 5$ mL.

Recall	P-Value Method	New	Critical Value Method
1) Hyp	$H_0: \mu = \underline{\hspace{2cm}}$	$H_a: \mu \underline{\hspace{2cm}}$	
2) Test Stat	$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$ $\bar{x} = \underline{\hspace{2cm}}$ $\sigma = \underline{\hspace{2cm}}$ $n = \underline{\hspace{2cm}}$ $z = \underline{\hspace{2cm}}$		
3) P-Value	<p>Test Stat ↓ Find P-value from test stat ↓ Compare P-val to α</p>  Area "beyond" z $P\text{-value} = \underline{\hspace{2cm}}$	<p>3) Critical Value</p> <p>Rejection Region = Area "beyond" z_α</p>  $z = \underline{\hspace{2cm}}$	<p>Test Stat ↓ Find Critical Value from α ↓ Compare Test stat to Crit Val</p>
4) Conclusion	<p>Because $P\text{-value} [\leq >] \alpha$,</p> <p>We [REJECT FAIL TO REJECT] H_0. There is [ENOUGH NOT ENOUGH] evidence that $\mu < 355$.</p>	<p>Because test stat. (z) is [INSIDE OUTSIDE] rejection region,</p>	
Criteria	<p>X is Normally Distributed? <input type="checkbox"/></p> <p>OR</p> <p>$n > 30?$ <input type="checkbox"/></p>		

TOPIC: HYPOTHESIS TESTING USING CRITICAL VALUES

PRACTICE

A soup company claims that the average sodium content of their most popular soup is 500 mg per can. A nutritionist collects a sample of 36 cans with mean sodium content 507 mg. Assume a known pop. standard deviation of 15 mg & test the nutritionist's suspicion that the mean sodium content is more than 500 mg using the critical value method with $\alpha = 0.01$.

$$H_0: \mu = \underline{\hspace{2cm}} \quad H_a: \mu = \underline{\hspace{2cm}}$$

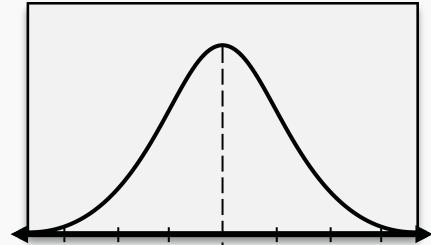
$$\bar{x} = \underline{\hspace{2cm}} \quad \sigma = \underline{\hspace{2cm}} \quad n = \underline{\hspace{2cm}}$$

$$z =$$

Critical Value(s):

Recall

$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}}$$



Because test stat. (z) is [INSIDE | OUTSIDE] rejection region, we [REJECT | FAIL TO REJECT] H_0 .

There is [ENOUGH | NOT ENOUGH] evidence to conclude that...

EXAMPLE

A city claims that 40% of households have backyard gardens. A researcher surveys 150 households and finds 72 with gardens. Use $\alpha = 0.10$ & the critical value method test if the true proportion is different from 40%.

$$H_0: p = \underline{\hspace{2cm}} \quad H_a: p = \underline{\hspace{2cm}}$$

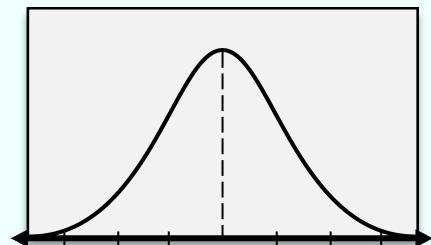
$$x = \underline{\hspace{2cm}} \quad n = \underline{\hspace{2cm}} \quad \hat{p} = \underline{\hspace{2cm}}$$

$$z =$$

Critical Value(s):

Recall

$$z = \frac{\hat{p} - p}{\sqrt{p(1 - p)/n}}$$



Because test stat. (z) is [INSIDE | OUTSIDE] rejection region, we [REJECT | FAIL TO REJECT] H_0 .

There is [ENOUGH | NOT ENOUGH] evidence to conclude that...