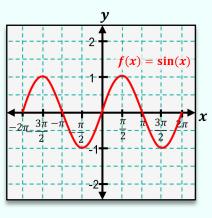

Finding Limits at Infinity Numerically & Graphically

- ◆ Recall: A limit is the *y*-value a function goes to as *x* gets really close to a specific number.
 - You may be asked to take the limit of a function as x gets really BIG (approaches _____)

EXAMPLE


Find each limit using the specified method.

(A) Find $\lim_{x\to\infty}\frac{5}{x}$ by creating a table of values.

x	1	10	100	1,000	10,000
$\frac{5}{x}$					

$$\lim_{x \to \infty} \frac{5}{x} = \underline{\hspace{1cm}}$$

(B) Find $\lim_{x \to -\infty} \sin(x)$ using the graph below.

$$\lim_{x \to -\infty} \sin(x) = \underline{\hspace{1cm}}$$

PRACTICE

Evaluate the following limit: $\lim_{x \to \infty} -\frac{4}{x} + 2$.

PRACTICE

Evaluate the following limit: $\lim_{x\to\infty} \tan(x) - 6$.

Finding Limits at Infinity Algebraically

- lacktriangle To evaluate limits as $x \to \pm \infty$ of rational fcns, divide each term by the _____ power of x.
 - ▶ Shortcut: Compare the highest power of *x* (a.k.a degrees) in the _____ & _____

EXAMPLE

Evaluate the limit.

Top Deg. < Bottom Deg.

(A)
$$\lim_{x \to \infty} \frac{3x^2 + 4x - 1}{x^3 + 27}$$

Top Degree: _____

Bottom Degree: _____

$$\lim_{x \to \infty} f(x) = \underline{\hspace{1cm}}$$

Top Deg. > Bottom Deg.

$$\lim_{x \to \infty} \frac{7x^3 - x^4 + 11x}{6x^2 - 2}$$

Top Degree: _____

Bottom Degree: _____

$$\lim_{x\to\infty}f(x)=\underline{\hspace{1cm}}$$

Top Deg. = Bottom Deg.

$$\lim_{x \to -\infty} \frac{2x - 1}{5x + 1}$$

Top Degree: _____

Bottom Degree: _____

$$\lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$$

$$\begin{array}{c|ccccc} x & 1 & 10 & 100 & 1,000 \\ \hline f(x) & 0.214 & 0.330 & 0.030 & 0.003 \end{array}$$

$$x$$
 -1 -10 -100 -1,000 $f(x)$ 0.750 0.429 0.403 0.400 = $\frac{2}{5}$

♦ This shortcut works the same whether you're dealing with $x \to \infty$ or $x \to -\infty$.

PRACTICE

Evaluate the following limit: $\lim_{x\to\infty} \frac{x+7}{8x-100}$.

EXAMPLE

Evaluate each limit.

(A)

$$\lim_{x \to -\infty} \frac{7x^2 - 100}{49x^2 + 27x + 563}$$

(B)

$$\lim_{x \to -\infty} 5x^2 + 3$$

(C)

$$\lim_{x \to \infty} \frac{10x^{10} - 8x^6 + 30x^3}{23x^{10} - 40x^2 + 9x - 137}$$