

CONCEPT: Gravitational Potential Energy

• In Gravitation, we use a different equation for Gravitational Potential Energy.

EXAMPLE: An asteroid at rest falls to Earth from a distance of 6×10⁷ m from Earth's center. What will be its impact speed?

	M
	141

- There's still some Grav. Potential Energy at the surface!

$$-\frac{GMm}{r} \rightarrow -\frac{GMm}{r}$$

PRACTICE: How much energy is required to move a 1000-kg object from Earth's surface to a height twice Earth's radius?

EQUATIONS	CONSTANTS
$F_G = \frac{Gm_1m_2}{r^2} r = R + h$	$G = 6.67 \times 10^{-11} \frac{m^3}{\text{kg} \cdot \text{s}^2}$
$g_{surf} = \frac{GM}{R^2}$ $g = \frac{GM}{r^2}$	$M_E = 5.97 \times 10^{24} \text{ kg}$
$U_G = -\frac{GMm}{r}$	R _E = 6.37×10 ⁶ m
$\mathbf{K_i} + \mathbf{U_i} + \mathbf{W_{NC}} = \mathbf{K_f} + \mathbf{U_f}$	

<u>EXAMPLE</u>: Two identical small planets of mass 7×10^{22} kg and radius 2×10^6 m are initially at rest 5×10^{10} m apart. What is the speed of each planet when the two eventually collide?

EQUATIONS	CONSTANTS
$F_G = \frac{Gm_1m_2}{r^2} r = R + h$	G = $6.67 \times 10^{-11} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2}$
$\mathbf{g}_{\mathrm{surf}} = \frac{\mathrm{GM}}{\mathrm{R}^2} \mathbf{g} = \frac{\mathrm{GM}}{\mathrm{r}^2}$	$M_E = 5.97 \times 10^{24} \text{ kg}$
$U_G = -\frac{GMm}{r}$	R _E = 6.37×10 ⁶ m
$\mathbf{K_i} + \mathbf{U_i} + \mathbf{W_{NC}} = \mathbf{K_f} + \mathbf{U_f}$	

<u>PRACTICE</u>: You launch a rocket with an initial speed of 5×10^3 m/s from Earth's surface. At what height above the Earth will it have $\frac{1}{4}$ of its initial launch speed? Assume the rocket's engines shut off after launch.

EQUATIONS	CONSTANTS
$F_G = \frac{Gm_1m_2}{r^2} r = R + h$	$G = 6.67 \times 10^{-11} \frac{m^3}{\text{kg} \cdot \text{s}^2}$
$g_{surf} = \frac{GM}{R^2}$ $g = \frac{GM}{r^2}$	M _E = 5.97×10 ²⁴ kg
$U_G = -\frac{GMm}{r}$	R _E = 6.37×10 ⁶ m
$\mathbf{K_i} + \mathbf{U_i} + \mathbf{W_{NC}} = \mathbf{K_f} + \mathbf{U_f}$	