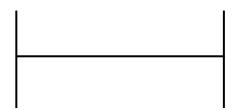
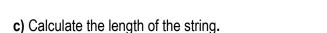
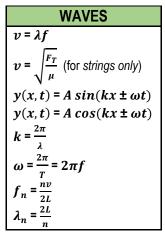
CONCEPT: CALCULATING PROPERTIES OF STANDING WAVES USING WAVEFUNCTIONS

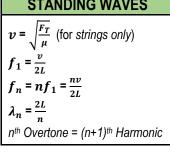

- In some problems, you'll be given the wavefunction for a standing wave and have to calculate some of its properties.
 - The wavefunction for the Standing Wave is a special combination of the original & reflected waves that make it up:

 $y_n(x, t) =$ (FOR STANDING WAVES <u>ONLY</u>)


- where Asw is _____ the amplitude A of the original & reflected waves.

EXAMPLE: A thin string under tension, tied at both ends, vibrates in its 3rd harmonic. The wavefunction describing this wave is given by $y(x, t) = (5 \text{cm}) sin \left[0.034 \left(\frac{\text{rad}}{\text{cm}} \right) x \right] sin \left[50 \left(\frac{\text{rad}}{\text{s}} \right) t \right]$.


a) Draw a sketch of this standing wave.


b) Calculate the amplitude of the waves that make up this standing wave.

d) Calculate the period of oscillation.

	STANDING WAVES
The left end of the wire is at $x = 0$. Derive an expression for the distances of the nodes and anti-nodes.	
PROBLEM: A standing wave on a wire is described by the wavefunction $y(x, t) = [0.0025sin]$	$(0.75\pi x)]sin[942 t].$

