
CONCEPT: DNA DOUBLE HELIX

• Rosalind Franklin, James Watson & Francis Crick are credited with helping to describe the structure of _____.

□ _____-helix with ___ anti-parallel strands of nucleotides.

- Anti-parallel: 2 strands that run parallel to each other but with ______ directions.

□ Double helix resembles a _____ ladder: phosphate-sugar backbone on the sides and bases ____

EXAMPLE: Predict the sequence of bases in the DNA strand that is complementary to the DNA strand shown below:

5' C-G-A-A-A-C-T-C-C-T-A 3'

PRACTICE: Which of the following statements is false?

- a) The nitrogenous bases extend inward within the double helix.
- b) The two polynucleotide strands in the DNA double helix are identical to one another.
- c) Hydrogen bonding occurs between the two polynucleotide strands within DNA.
- d) The complementary strand of DNA segment of 5' GCATTCAT 3' would be 3' CGTAAGTA 5'.
- e) Phosphate groups and sugars form the backbone of the DNA double helix.

CONCEPT: DNA DOUBLE HELIX

Detailed DNA Structure

The DNA do	ouble helix has a	width of, with	h <u>10</u> base pairs	per turn and withi	n a full turn a lei	ngth of	
□ The	e helical shape of	DNA creates	grooves that ar	e present on the e	exterior of its 2 s	trands.	
		Groove: The	and	groo	ove of the DNA	double helix.	
		Groove : The	and	sha	llow groove.		
			WW				
		Groove	Groove				
Proteins can bind to these grooves in order to regulate RNA and DNA							
EXAMPLE : Calculate the approximate length of a DNA segment that is composed of 171 base pairs.							
a) 340 angstroms		b) 20.0 angstroms		c) 581 angstroms		d) 291 angstroms	

PRACTICE: Clinical trials include the use of DNA-binding drugs that facilitate the breaking of double-stranded DNA in their function. A hypothetical drug used in the treatment of leukemia requires interaction with the grooves of DNA. If the minor groove is A–T rich and the major groove is G–C rich, which of the following statements can be true?

- a) The drug would more readily bind to the minor groove of DNA.
- b) The drug would more readily bind to the major groove of DNA.
- c) The drug would equally bind to the minor and major grooves of DNA.
- d) Not enough information is given.

CONCEPT: DNA DOUBLE HELIX PRACTICE: One turn of a DNA sequence is comprised of 30% guanine (G). Calculate the approximate number of hydrogens bonds likely to be found within this DNA sequence.
PRACTICE: One turn of a DNA sequence is comprised of 15% adenine (A). If the bonding energies of A–T and G–C are 24 kJ/mol and 18 kJ/mol respectively, calculate the approximate total bonding energy in this one turn.