CONCEPT: ALPHA CARBONS AND TAUTOMERIZATION

H₃C CH₃

We have discussed the high reactivity of the carbonyl carbon.

However, carbonyls contain another highly reactive component.

- What is the acidity of the β-carbon? _____
- What is the acidity of the α-carbon? _____
- Which phenomenon is responsible for this difference?

<u>Tautomerization General Reaction:</u>

$$R^1$$
 R^2
 R^2
 R^2

Acid-Catalyzed Mechanism:

Base-Catalyzed Mechanism:

$$H$$
 O
 R
 O
 H_2C
 R
 O
 H_2C
 R

 $\underline{\mathsf{PRACTICE:}} \ \mathsf{Draw} \ \mathsf{the} \ \mathsf{enol} \ \mathsf{tautomer} \ \mathsf{for} \ \mathsf{the} \ \mathsf{following} \ \mathsf{compound}.$

Cyclopentanone