

CONCEPT: NUCLEOPHILIC CATALYSIS

- In Orgo 1, we learned double S_N2 caused _____ of R/S configurations, but it also serves as a *nucleophilic catalyst*.
 - □ **Nucleophilic catalyst**: displaces leaving group with a _____ nucleophile/leaving group.

• Displacing the original halogen with a better nucleophile/leaving group also causes an ____ in the rate of reaction.

Uncatalyzed vs Catalyzed Reactions	
Reaction	Rate
Uncatalyzed	
	6.0 x 10 s ⁻¹
Catalyzed	
CI + :ÖH - :::- H₂O	3.7 x 10 s ⁻¹

EXAMPLE: Which of the following will undergo an S_N2 reaction most readily when reacting with sodium hydroxide and a trace amount of iodide?

CONCEPT: NUCLEOPHILIC CATALYSIS

PRACTICE: Predict the final product from the chemical steps provided.

PRACTICE:

PRACTICE: Using 3-methyl-1-butene as a starting material, predict the final product based on the list of reagents given?