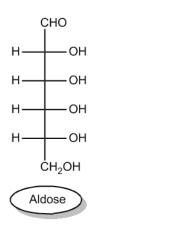
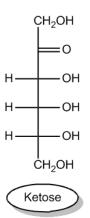
CONCEPT: INTRODUCTION TO CARBOHYDRATE MONOSACCHARIDES

Sugars or saccharides are also referred to as carbo-hydrates, implying that carbon has been combined with _____

• Monosaccharides are the most basic units of sugars

All unmodified monosaccharides have the same general formula: ______, where n ≥ 3


Monosaccharides can be represented as straight chains OR rings


□ One oxygen attached to each and every carbon atom, and 1 IHD regardless of form

Monosaccharides begin as either ______ or _____ or ______

□ Aldehyde sugar = _____

□ Ketone sugar = _____



General Features:

Monosaccharides can be described by both *generic names* and *specific names*. Generic naming involves:

- Carbonyl type (i.e. aldo—)
- Carbon Chain Length (Pre-IUPAC) with -"ose" ending (i.e. -triose, -tetrose, -pentose, -hexose, etc)
 - ☐ The total number of stereoisomers possible is described by ______
 - □ **Epimers** are stereoisomers of monosaccharaides differing at only **one** chiral carbon

EXAMPLE: Epimers of aldohexose

PRACTICE: Provide the *generic name* for the following monosaccharide.

PRACTICE: How many possible stereoisomers AND epimers exist for the following aldopentose? Draw all of the possible epimers.

Ribose

PRACTICE: Identify and label all of the possible stereoisomers of aldotetrose as enantiomers, diastereomers or epimers of each other.