## **CONCEPT:** CATIONIC POLYMERIZATION

- Alkenes with electron-\_\_\_\_\_ groups undergo cationic polymerization.
  - □ An \_\_\_\_\_ or \_\_\_ ion initiates the reaction.
    - The electrophile can be a Lewis acid such as \_\_\_\_\_.

Cationic Polymerization

$$H_2C = CH$$
 $E^+/H^+$ 
 $EDG$ 
 $E^+/H^+$ 
 $EDG$ 
 $EDG$ 

## **Cationic Polymerization Mechanism**

• The reaction mechanism has 3 steps.



STEP 1: The Lewis acid (BF<sub>3</sub>) reacts with H<sub>2</sub>O to form an adduct.

□ The H<sub>2</sub>O–BF<sub>3</sub> adduct donates a \_\_\_\_\_ ion to the monomer.

Chain Initiation

$$F_{3}B + H_{2}O: \longrightarrow \longrightarrow \longrightarrow$$

$$F_{3}B - O - H + H_{2}C = CH \longrightarrow OCH_{3} \longrightarrow OCH_{3} \longrightarrow OCH_{3}$$

STEP 2: The monomer cation reacts with a monomer molecule and forms a new cation through head-to-tail addition.

## **CONCEPT: CATIONIC POLYMERIZATION**

STEP 3: Chain termination can occur by:

- 1 Removal of H+: Loss of H+ similar to \_\_\_\_\_\_
- 2 Nucleophilic Attack: counterion from the initiation step can attack the cation.

**EXAMPLE:** Arrange the following monomers from the highest to the lowest reactivity towards cationic polymerization.

**PRACTICE:** Many heterocyclic compounds can undergo polymerization under acidic conditions. Draw the mechanism of the propagation step for cationic polymerization of thietane (four-membered saturated sulfur heterocycle).