CONCEPT: DISULFIDE BONDS

Disulfide Bond Formation

- Thiols can be oxidized into a *disulfide* in the presence of the mild oxidizing agent ____ or___ in NaOH solution.
 - □ A disulfide represents two ____ atoms covalently bonded.
- Takes place in ____ steps:
 - 1 Thiol Ionization: A ______ base deprotonates the thiol to create a thiolate-anion.
 - 2 S_N2 Reaction: Thiolate-anion reacts with a _____ molecule.
 - (3) S_N2 Reaction: A second thiolate-anion reacts with _____ thiol.

Disulfide Bond Formation Thiol

• Thiol Reversion: Disulfides are reverted back to their initial thiols through reducing agent of _____ in Zn.

EXAMPLE: Provide the mechanism when two moles of ethanethiol reacts with bromine in basic solution.

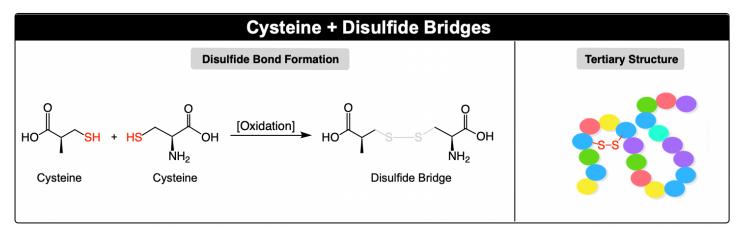
PRACTICE: Provide the name of the product created when the following reaction takes place.

- a) Isopropyl thiol

- b) 2-methyl-1-propanethiol c) 3-methyl-1-propanethiol d) 2-methyl-3-propanethiol

CONCEPT: DISULFIDE BONDS

PRACTICE: Using 3-methyl-1-propene as a starting material, predict the final product based on the list of reagents given.


$$\begin{array}{c|c} & H_2S, H^+ & I_2 \\ \hline & NaOH \end{array}$$

PRACTICE: Beginning benzene, determine the chemical steps needed to prepare the following compound.

CONCEPT: DISULFIDE BONDS

Interactions within the Tertiary Structure

- Recall: The tertiary structure of a protein is its overall 3D ______.
 - □ One of the interactions responsible for this structure are the disulfide bonds (bridges).
 - Disulfide bridges form when _____ groups from two cysteine residues react.

EXAMPLE: Illustrate the pentapeptide formed when a molecule of Cys-Gly connects with Cys-Val-Phe via a disulfide bridge.

PRACTICE: Determine which of the following peptide chains could be further stabilized by intramolecular a disulfide bridge(s).

- a) Trp-Cys-Met-Ile-Val-Gln-Arg-Ala-Arg-Gly-Glu-Met-Pro-Leu-Phe
- b) Ala-Phe-Met-Ser-Trp-Ser-Leu-His-Arg-Arg-Ala-Pro-Thr-His-Val
- c) Gly-Leu-Ala-Glu-Gln-Cys-Ser-Met-Gln-Leu-Asn-Cys-Trp-Ile-Val-Ala
- d) Phe-Ile-Leu-Cys-His-Arg-Tyr-Thr-Phe-Met-Arg-Ala-Asn-Ile-Phe-Lys
- e) Gly-Asn-Val-Val-Ille-His-Leu-Thr-Pro-Met-Tyr-Ser-Cys-Trp-Leu-Ala