

CONCEPT: BEER-LAMBERT LAW

• Beer-Lambert Law: linear relationship between _____ of a sample and how strong it _____ light.

□ Used to measure concentration (____) of a solution, its _____ (A) or _____ absorptivity (ε).

- When sample solution absorbs light, I is _____ than I_0 .

Beer-Lambert Law Equation

A = _____ of sample I_0 = _____ of light *I* = Intensity of light through

 ε = molar absorptivity (_____) c = sample concentration (_____) /= pathlength of light (_____)

EXAMPLE: A sample solution was found to have absorbance of 0.602. Calculate the I_0/I ratio.

PRACTICE: A 1.6 x 10⁻³ g sample of compound (MM = 136 g/mol) was dissolved in 15 mL of methanol. Maximum absorption at λ_{max} (258 nm) represents absorbance of 0.73. Determine the molar absorptivity of the sample if the light travels through a 1.6 cm UV cell.

- a) 581718 M⁻¹ cm⁻¹
- b) 58.0 M⁻¹ cm⁻¹ c) 2.06 x 10⁵ M⁻¹ cm⁻¹ d) 580 M⁻¹ cm⁻¹