

□ Instead of OH on glycerol, write ___. □ Do ____ draw OH on fatty acids.

STEP 1: Draw glycerol molecule and the 3 fatty acids. Place glycerol ____ groups next to _____ groups of fatty acids.

STEP 2: Form ester bonds between glycerol OH groups and the 3 fatty acids.

CONCEPT: TRIACYLGLYCEROLS

Fats and Oils

- Fats and oils are _____ of different triacylglycerols.
- Saturated fatty acids can pack more tightly in a solid phase which ____ interactions between one another.

□ ____ Interactions = ____ Intermolecular Forces = ____ Melting Points.

Fats and Oils			
	Melting Point	Saturation	Example
Fats (animal)	• at room temp	# of double bonds in unsaturated fatty acids	H ₂ C-O O O O O O O O O O O O O O O O O O O
Oils (vegetable)	• at room temp	# of double bonds in unsaturated fatty acids	H ₂ C-O

PRACTICE: Draw a skeletal structure of a triglyceride with linolenic acid (C1) and 2 palmitoleic acids. State whether it would have high or low melting point.

CONCEPT: TRIACYLGLYCEROLS

PRACTICE: Which triacylglycerol is optically active?

a)
$$H_2C - O O (CH_2)_{16}CH_3$$
 $HC - O O (CH_2)_{16}CH_3$
 $HC - O O (CH_3)_{16}CH_3$

b)
$$H_2C - O O (CH_2)_{14}CH_3$$
 $H_2C - O O (CH_2)_{7}$
 $H_2C - O O (CH_2)_{7}$

c)
$$H_2C - O O (CH_2)_7$$
 $H_2C - O O (CH_2)_7$ $(CH_2)_7$

d)
$$H_2C-O$$
 O $(CH_2)_7$ O $(CH_2)_7$ O $(CH_2)_7$ O $(CH_2)_7$ O $(CH_2)_7$ O $(CH_2)_7$ O $(CH_2)_7$