
CONCEPT: THE UV-VIS SPECTROSCOPY

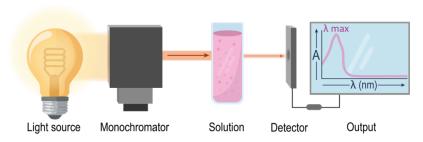
Electromagnetic Spectrum

• Recall: It represents a continuum of electromagnetic radiation containing _____ wavelengths and frequencies.

□ Visible Light Region: ____ nm to ____ nm

□ UV Region: _____ nm to _____ nm

MEMORY TOOL

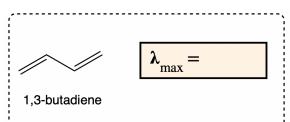

Rude Martians Invented Very Unusual X-Ray Guns

EXAMPLE: From the choices provided, which kind of electromagnetic radiation contains the lowest amount of energy?

- a) Microwave
- b) X-Ray
- c) Gamma Rays
- d) Ultraviolet
- e) Infrared

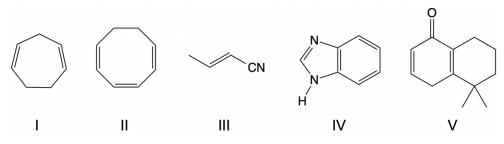
UV-Vis Spectrum

- UV Spectroscopy is used to examine the electronic transitions of compounds with _____ pi bonds.
 - □ A spectrophotometer uses a **light source** that emits UV light at all wavelengths.
 - $\hfill \square$ A \hfill A \hfill monochromator filters the desired wavelength needed by the solution for absorption.
 - □ The absorption (A) is determined and plotted onto a UV-Vis spectrum.
 - Its prominent feature is _____ which is the wavelength of maximum absorption.


EXAMPLE: Which of the following compounds would produce a UV-Vis spectrum via spectrophotometer?

- a) 1,4-cyclohexadiene
- b) 1,3-cyclobutadiene
- c) 1,4-cycloheptadiene
- d) cyclooctene

CONCEPT: THE UV-VIS SPECTROSCOPY

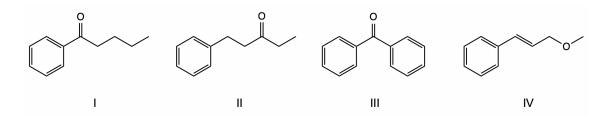

Conjugation and Lambda Max

- Only organic molecules with _____ bonds will absorb on a UV-Vis spectrum.
 - □ ____ conjugation, ____ lambda max.

$$\lambda_{max} =$$
1,3,5-hexatriene

EXAMPLE: Which of the following compounds would you expect to show UV absorptions in the 200 to 400 nm range?

- a) I, II, IV
- b) I only
- c) II, IV, V
- d) II, III, IV
- e) II, III, IV, V


CONCEPT: THE UV-VIS SPECTROSCOPY

PRACTICE: Which of the following compounds would you expect to show absorption in the portion of the electromagnetic spectrum that we can be visually seen without the use of equipment?

- a) 1,3,5-hexatriene (λ_{max} = 256 nm)
- b) Quinoline ($\lambda_{max} = 313 \text{ nm}$)
- c) Lycopene (λ_{max} = 476 nm)
- d) Acetone (λ_{max} = 274 nm)
- e) 3-methylene-1-cyclohexene (λ_{max} = 230 nm)

PRACTICE: A compound with the formula $C_{11}H_{14}O$ has a λ_{max} of approximately 244 nm. Based on the given information, which of the following compounds is the likely identity of the compound?

- 1. IR Spectroscopy revealed a signal of 1710 cm⁻¹.
- 2. Reduction of the functional group at 1710 cm⁻¹ created a chiral molecule.
- 3. Reduction of the functional group at 1710 cm⁻¹ caused no change in the λ_{max} of the compound.

- a) I only
- b) II and III
- c) I and III
- d) III and IV
- e) II only