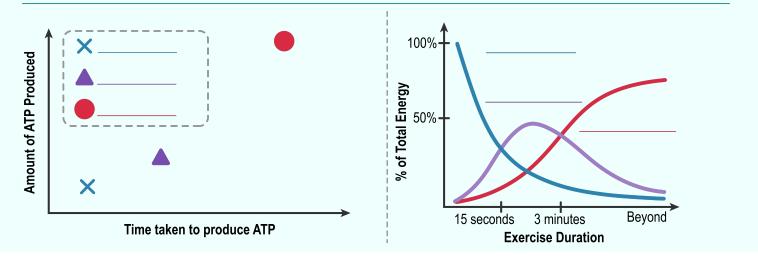

Using Energy to Fuel Exercise

- ◆ To perform physical activity, our cells need to generate usable *energy* & _____ is the most common form!
 - Adenosine Triphosphate (ATP): adenosine molecule attached to a chain of _____ phosphate groups.
 - Cleaving a phosphate group from ATP produces ADP, P, & releases usable ______!
- ◆ Different exercises rely on different ATP-generating energy systems that differ in ATP production rate & output.

ATP-Generating Energy Systems


◆ There are 3 ATP-generating energy systems:

	Anaerobic (Without 0_2)		0) 4 1: (::: 0)
	1) ATP-CP	2) Glycolysis	3) Aerobic (with O ₂)
Speed of ATP		Fast	
Production		rasi	
Amount of ATP	amount	Little	
Produced			
When is it the	First ~ seconds of activity	Between ~15 seconds & 3 minutes.	> minutes.
Primary Energy			Fats: intensity;
Source?			Carbs: intensity.

Note: Most physical activity is fueled by a combination of aerobic & anaerobic energy.

EXAMPLE

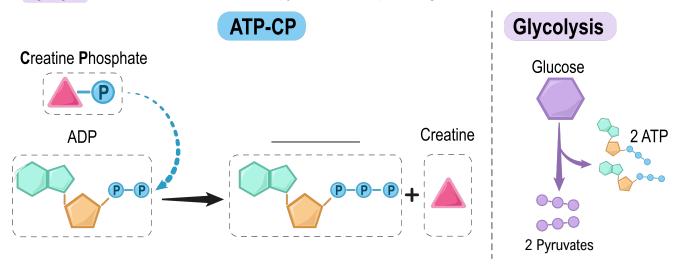
Label each color-coded point/curve in the following two graphs with the ATP-generating energy systems.

PRACTICE

Sophie is running a 1500-meter race at a track meet. Which of the following energy systems is she using at each of the following sections of the race?

0-100 meters (0-15 seconds) / 100-1000 meters (15 secs - 3 mins) / 1000-1500 meters (3 mins - end of race).

b)

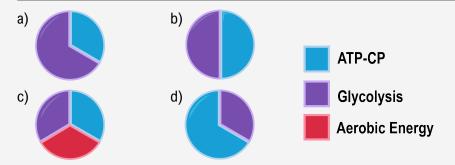

d)

a) 0-100m: ATP-CP System 100m-1000m: Aerobic system 1000m-1500m: Glycolysis 0-100m: Aerobic system 100m-1000m: ATP-CP System 1000m-1500m: Glycolysis

c) 0-100m: Glycolysis 100m-1000m: ATP-CP System 1000m-1500m: Aerobic System 0-100m: ATP-CP System
100m-1000m: Glycolysis
1000m-1500m: Aerobic System

Anaerobic Energy via ATP-CP & Glycolysis

- ◆ When muscle cells deplete their ATP stores, creatine phosphate is used to produce energy anaerobically.
- ◆ Creatine Phosphate (_____): high-energy compound stored in muscles that can be used to regenerate ATP.
- ◆ Glycolysis converts ______ into 2 pyruvates, while producing 2 ATP.

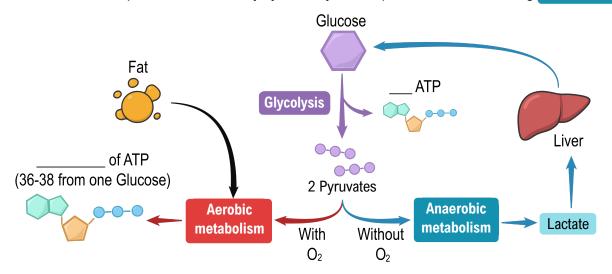

EXAMPLE

Fill in the blank spaces to complete the table:

Anaerobic Energy (via ATP-CP & Glycolysis)	Aerobic (Oxidative) Energy	
Does NOT use oxygen	Uses	
efficient, produces less ATP	High efficiency, produces of ATP	
Produces ATP	Takes longer to produce ATP	
Used primarily for the first ~3 minutes of activity	Used primarily during, sustained activity	
Uses creatine phosphate &/or	Uses carbs,, & limited amounts of protein	

PRACTICE

Which pie chart best represents the relative contribution of the three ATP-generating energy systems (ATP-CP, glycolysis, & aerobic energy) during a maximal-effort 400-meter sprint lasting ~45 seconds?


PRACTICE

Which of the following statements about the ATP-CP energy system is true?

- a) The phosphate group is cleaved from ATP, binding to creatine & regenerating CP.
- b) The phosphate group is cleaved from CP, binding to ADP & regenerating ATP.
- c) When a phosphate group binds to ADP (regenerating ATP), it releases energy.
- d) All of the above are true.

Aerobic Energy & Lactate Production

- ◆ Recall: aerobic energy is produced *slowly* but in *large* amounts by primarily breaking down carbs (glucose) & fats.
- ◆______ is produced continuously by the body, BUT is produced the most during anaerobic respiration.

PRACTICE

Which of the following statements about aerobic energy production is true?

- a) Glucose is the only molecule that can be used to produce ATP aerobically.
- b) In the aerobic pathway, one molecule of glucose can produce 36-38 ATP molecules.
- c) Proteins are the primary source of anaerobically generated ATP.
- d) All of the above are true.