TOPIC: HOW ANTIMICROBIAL DRUGS WORK

Selective Toxicity

◆ Recall: selective toxicity: drugs must	st kill but not be toxic to humans.	
 More difficult for an 	nd; share more molecular machiner	y with humans.
• Easier with prokaryotes (); more differences from human cells.	
◆ basic targets of antibacterial	ls:	
1) Cell: Bacteria use cell walls of peptidoglycan. 2) Cell Membrane: Bacteria use lipids in membrane.		4) Ribosome and Translation: ◆ Different structure (70s vs 80s). 5) Metabolic Pathways: ◆ Bacteria must produceacid.
3) Nucleic Acid Synthesis: Different for replication & transcription. Usually Bactericidal: bacteria directly	STOP /.	Usually Bacteriostatic: stop (allowing immune system to act).

EXAMPLE

Given below are components of different targets of common antibacterial drugs. For each component, determine if a drug targeting that component is more likely to be bactericidal or bacteriostatic. For bactericidal, write "BC" and for bacteriostatic, write "BS".

1	Folic acid synthesis	
2	Peptidoglycan	
3	70S ribosome	
4	Lipids and sterols	
5	Topoisomerase	

If a drug is bacteriostatic, how is the infection ever cleared from the body?

TOPIC: HOW ANTIMICROBIAL DRUGS WORK

PRACTICE

When identifying ways a drug may be selectively toxic, why is bacterial protein synthesis a good potential target?

- a) Bacteria and eukaryotes use different tRNAs.
- b) There are many differences between bacterial 70s ribosomes and eukaryotic 80s ribosomes.
- c) The genetic code between bacteria and eukaryotes is different, allowing drugs to target bacterial-specific codons.
- d) Bacterial ribosomes often bind to RNA and initiate translation before transcription is complete.