CONCEPT: CALCULATE OXIDATION NUMBERS																				
The Oxidation Number: an element's ability to, or electrons when alone or in a compound.																				
 The Natural State For an atom in its Natural State (standard state), its oxidation number (oxidation state) is equal to 																				
		1A (1)																	8A (8)	
	1	Hydrogen	(2)	I										3A (3)	4A (4)	5A (5)	6A (6)	7A (7)	Helium	
	2		Be Beryllium	3B	4B	5B	6B	7B		8B		1B	2B	Boron		Nitrogen	Oxygen	Fluorine		
	3	Na Sodium	Mg Magnesium Ca	(3) Sc	(4)	(5) V	(6)	Mn	(8)	(9) Co	(10) Ni	Cu	(12) Zn	AI Aluminum Ga	Si Sillicon	Phosphorus As	Sulfur	Chlorine	Ar	
	4	Potassium Rb	Calcium Sr		Titanium	Vanadium	1	Manganese TC	Iron Ru	Cobalt	Nickel Pd	Copper	Zinc		Germanium Sn		Selenium Te	Bromine	Kr Krypton	
	5	Rubidium	Strontium		Zirconium	Niobium Ta	Molybdenun		Ruthenium	Rhodium	Palladium Pt	Silver	Cadmium Hg	Indium	Pb	Antimony		lodine At	Xenon	
	6	Cesium		Lanthanum	Hafnium Rf	Tantalum Db	Tungsten		Osmium	Iridium Mt	Platinum	Rg	Mercury Cn	Thallium Nh	Lead FI		Polonium	Astatine	Radon	
	7	Francium			Rutherfordiun			Bohrium			Darmstadtium			Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson	
EXAMPLE: Which of the following compounds would have an oxidation number or oxidation state equal to zero?																				
a) Na₃	b) Cl c) He d) Mn ₄																			

<u>lons</u>

- Recall, an ion is an element or compound with a _____ or ____ charge.
 - $\hfill \Box$ For a *monoatomic ion*, the oxidation number is ______ to its charge.

EXAMPLE: Which of the following elements would have the most positive oxidation number based on its ionic form? a) Silver, Ag b) Scandium, Sc c) Sodium, Na d) Sulfur, S

PRACTICE: Which of the following elements would have the lowest oxidation number?

a) Indium, In

- b) Strontium, Sr
- c) Argon, Ar

d) Manganese, Mn

CONCEPT: CALCULATE OXIDATION NUMBERS

Oxidation Number Rules

- Oxidation Numbers don't always correspond to real charges and therefore a list of rules will be necessary.
 - □ When different elements are in a compound these specific rules will be used to calculate oxidation numbers.

Specific Oxidation Number Rules								
Element(s)	Oxidation Number							
Group 1A	when connected to any other element							
Group 2A	when connected to any other element							
Fluorine	when connected to any other element							
Hydrogen	when connected to nonmetals Ex: , ,							
	, when connected metals or boron Ex:,,							
Oxygen	when it is not a peroxide or superperoxide							
	when it exists as a peroxide Ex: , , , oxygens.							
	when it exists as a superoxide Ex: , ,							
	☐ Superoxide = Group 1A elements + oxygens.							
Group 7A (CI, Br, I)	except when they are connected to oxygen							

a) NaO2	b) CO ₂	C) CS ₂ O ₂	d) O ₂
Oxidation Number of N	on listed Floments		
 When asked to determ 	nine the oxidation number of a	non-listed element within a compoun	d:
STEP 1: Treat the non-li	sted element as		
STEP 2: Use the list to V	VRITE the known oxidation nu	mber of the other elements.	
STEP 3: If an element ha	as a <mark>subscript</mark> then remembe	r to distribute it.	
STEP 4: ADD up the oxid	dation numbers, create an equ	uation and make it equal to the	of the compound.
EXAMPLE: Give the ox	xidation number of the carbon	atom in the acetate ion: C ₂ H ₃ O ₂ -	

EXAMPLE: Which compound has oxygen with the lowest oxidation state?