

TOPIC: COMPOSITION OF FUNCTIONS

Function Composition

◆ Function composition is like evaluating, but you replace the inside variable of a function with ***ANOTHER*** _____.

EVALUATING a Function	COMPOSING a Function
$f(x) = x^2 + 3x - 10$ $f(7) = ()^2 + 3() - 10$ =	$f(x) = x^2 + 3x - 10$ $g(x) = x - 2$ $f(g(x)) = ()^2 + 3() - 10$ =
Result is a [NUMBER FUNCTION]	Result is a [NUMBER FUNCTION]

Note: $f(g(x))$ is often written as _____. First letter = outside function, second letter = inside function

EXAMPLE: Given the functions $f(x) = x + 4$ and $g(x) = x^2 - 3$, find the following composite functions (fully simplify your answer).

$$(A) \quad f(g(x)) =$$

$$(B) \quad g(f(x)) =$$

TOPIC: COMPOSITION OF FUNCTIONS

PRACTICE

Given the functions $f(x) = \sqrt{x+4}$ and $g(x) = (x-2)^2 - 4$, (A) find $(f \circ g)(x)$ and (B) $(g \circ f)(x)$.

PRACTICE

Given the functions $f(x) = \frac{1}{x^2-2}$ and $g(x) = \sqrt{x+2}$, (A) find $(f \circ g)(x)$ and (B) $(g \circ f)(x)$.

TOPIC: COMPOSITION OF FUNCTIONS

Evaluating Composed Functions

◆ You may have to compose functions and **then** _____ at a specific value, $f(g(\#))$. Two common methods:

Method 1: Compose → Evaluate <i>Use when first asked to find $f(g(x))$</i>	Method 2: Evaluate inside → Evaluate outside
$\begin{array}{ccc} f(x) & & g(x) \\ \downarrow & & \downarrow \\ f(g(x)) & & \\ \downarrow & & \\ f(g(\#)) & & \end{array}$	$\begin{array}{ccc} f(x) & & g(x) \\ & \searrow & \downarrow \\ & f(g(\#)) & g(\#) \\ & \downarrow & \end{array}$
EXAMPLE: For $f(x) = x^2$ and $g(x) = x - 1$, find $f(g(x))$ and then evaluate $f(g(3))$	EXAMPLE: For $f(x) = x^2$ and $g(x) = x - 1$, evaluate $f(g(3))$

PRACTICE

Given the functions $f(x) = x + 3$ and $g(x) = x^2$, (A) find $(f \circ g)(2)$ and (B) $(g \circ f)(2)$.