
TOPIC: SET OPERATIONS AND COMPOUND INEQUALITIES

Intersection and Union of Sets

- ◆ Solving more advanced inequalities will involve the **intersection** (____) or **union** (____) of sets.

EXAMPLE

If $A = \{1, 3, 5, 7, 9\}$ and $B = \{7, 9, 11, 13\}$, find $A \cap B$ and $A \cup B$.

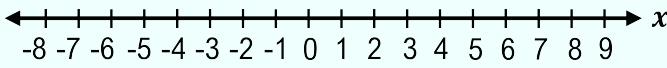
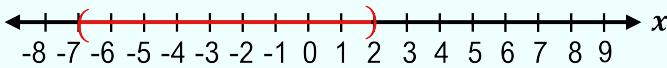
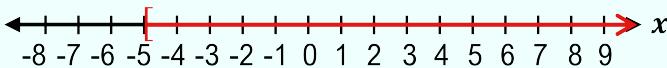
INTERSECTION	UNION
<p>$A \cap B$ " _____ "</p> <p>Elements in [BOTH EITHER] set(s) (the _____)</p> <p>$A \cap B =$</p>	<p>$A \cup B$ " _____ "</p> <p>Elements in [BOTH EITHER] set(s) (_____ elements)</p> <p>$A \cup B =$</p>

- ◆ The *empty* set has ____ elements and is denoted by empty brackets { } or by the symbol \emptyset .

TOPIC: SET OPERATIONS AND COMPOUND INEQUALITIES

PRACTICE

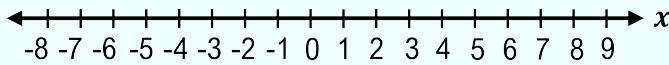
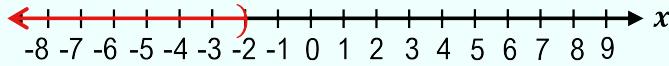
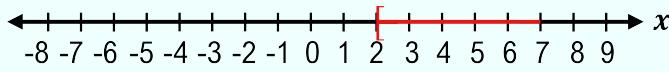
Given $A = \{2, 4, 6, 8\}$, $B = \{4, 8, 12, 16\}$, $C = \{8\}$, find the following:




(A) $A \cap C$

(B) $A \cup B$

(C) $C \cap \emptyset$

EXAMPLE

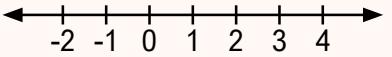



Sketch the intersection of each of these pairs of sets.

TOPIC: SET OPERATIONS AND COMPOUND INEQUALITIES

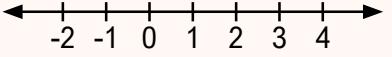
EXAMPLE

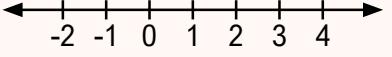
Sketch the union of each of these pairs of sets.

TOPIC: SET OPERATIONS AND COMPOUND INEQUALITIES


Solving Compound Inequalities Containing "and"

- ◆ A compound inequality is two inequalities linked by either "_____ " or "_____ ".
- The solution of an "and" compound inequality is the _____ of the two solution sets.


EXAMPLE


Solve the compound inequality $3x < 6$ and $x + 1 \geq 0$.

New **Compound Inequalities: "and"**

$3x < 6$

and

$x + 1 \geq 0$

Graph of Intersection:

Interval Notation:

Recall ≥ or ≤ → Include with [or]
> or < → Exclude with (or)

(Interval Notation)

TOPIC: SET OPERATIONS AND COMPOUND INEQUALITIES

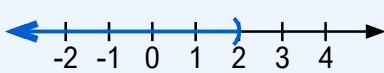
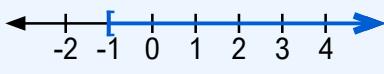
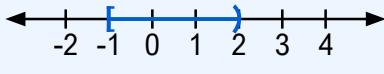
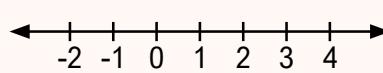
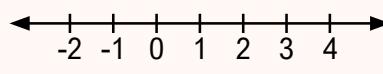
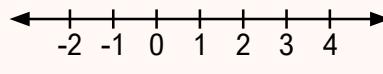
PRACTICE

Solve the compound inequality. Express the answer in interval notation.

(A)

$$-3x + 1 \leq 4 \text{ and } x - 2 < 3$$

(B)







$$x + 1 \leq 9 \text{ and } x + 2 > 3$$

TOPIC: SET OPERATIONS AND COMPOUND INEQUALITIES

Solving Compound Inequalities Containing "or"

◆ Recall: A compound inequality is two inequalities linked by either "**and**" or "**or**".

► The solution of an "**or**" compound inequality is the _____ of the two solution sets.

Recall	Compound Inequalities: "and"	New	Compound Inequalities: "or"
$x < 2$ and $x \geq -1$ Intersection: Interval Notation: $[1, 2)$	 Intersection: Interval Notation: $[1, 2)$	$x \geq 3$ or $x < 0$ Union: Interval Notation:	

TOPIC: SET OPERATIONS AND COMPOUND INEQUALITIES

PRACTICE

Solve the compound inequality. Express the answer in interval notation.

(A)

$$\frac{x}{3} > 2 \text{ or } 4x + 1 < 5$$

(B)

$$2x - 3 \leq 1 \text{ or } -x + 4 \leq 10$$

EXAMPLE

Translate the following into a compound inequality and solve.

A movie theatre offers a student discount to customers under 18 years old, and a senior discount to customers aged 60 up. If a represents a person's age, write and solve a compound inequality to represent the ages that qualify for a discount.