

TOPIC: POINT SLOPE FORM

Point-Slope Form of a Line

◆ If asked to write the equation of a line given _____ **point** and the **slope**, use **Point-Slope Form**.

Recall	Slope-Intercept Form	New	Point-Slope Form
$y = mx + b$ $m = 2 \quad b = 1$ $y = 2x + 1$			$y - y_1 = m(x - x_1)$ $(x_1, y_1) = (1, 3) \quad m = 2$ $y - 3 = 2(x - 1)$

◆ You may need to convert from **point-slope** to **slope-intercept** form by *distributing* the _____ and solving for y .

EXAMPLE

A line with a slope of $m = 1/2$, passes through the point $(-6, -2)$. What is the equation of the line in **(A) Point-Slope Form** and **(B) Slope-Intercept Form**?

TOPIC: POINT SLOPE FORM

PRACTICE

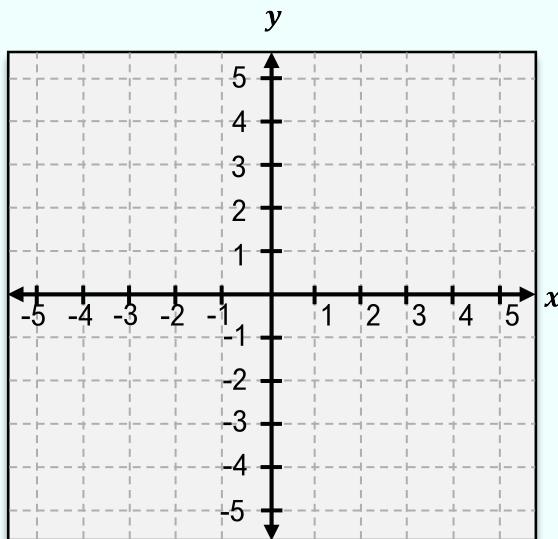
Write each equation in point-slope form and convert to slope-intercept form.

(A)

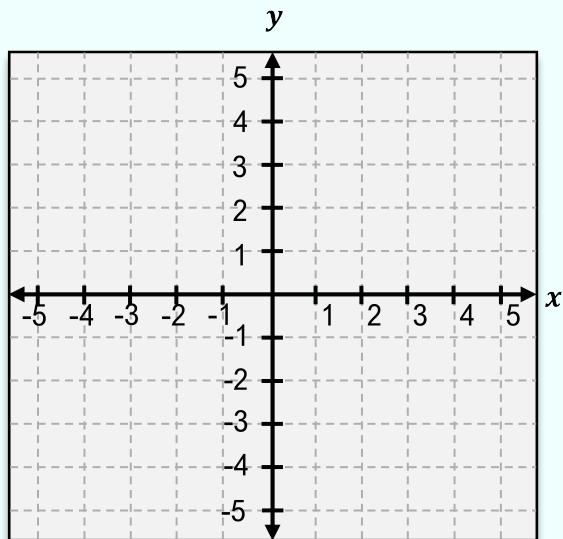
Slope: $m = 4$; Point: $(1, -2)$

(B)

Slope: $m = -\frac{3}{2}$; Point: $(0, 5)$


(C)

Slope: $m = \frac{1}{3}$; Point: $(-2, 4)$


EXAMPLE

Graph each line passing through the given point with the given slope.

(A) Through $(3, -1)$; slope = 2

(B) Through $(-2, 5)$; slope = $-\frac{1}{4}$

