

TOPIC: SIMPLIFYING EXPRESSIONS

Like Terms

- ◆ Recall: Algebraic expressions combine numbers and variables using operations. Ex: $2x + 5$
- The **terms** of an expression are the parts of an expression separated by _____ or _____ signs.

Like Terms	Not Like Terms
<p>[SAME DIFFERENT]</p> <p>variables _____ exponents</p> <p>$4x^2$ and $7x^2$</p> <p>$2ab$ and $8ba$</p> <p>$5x^2yz$ and $-10x^2yz$</p>	<p>[SAME DIFFERENT]</p> <p>variables _____ exponents</p> <p>$4x^2$ and $7x^3$</p> <p>$2a$ and $2ba$</p> <p>$5x^2yz$ and $-10xy^2z$</p>

- ◆ You can combine **like terms** by adding or subtracting their _____. You *CANNOT* combine **unlike terms**.

EXAMPLE

Combine like terms in the following expressions.

(A)

$$4x^2 + 7x^2$$

(B)

$$2ab + 8ba$$

(C)

$$5x^2yz - 10xy^2z$$

TOPIC: SIMPLIFYING EXPRESSIONS

EXAMPLE

In each expression, combine any like terms.

(A) $6a^2 + 8a^2$

(B) $7x^2 + 8x + 4$

(C) $-y^5 + 3y^5$

EXAMPLE

Combine like terms such that each variable only appears once.

(A) $3p + (-9p) + 4 - 2 + p$

(B) $6z - 4 + 11z + 9$

TOPIC: SIMPLIFYING EXPRESSIONS

PRACTICE

Combine like terms such that each variable only appears once.

(A)

$$\frac{3}{4}x + \frac{1}{2}x$$

(B)

$$0.5z + .25z - 1.35 + 1.55$$

TOPIC: SIMPLIFYING EXPRESSIONS

Simplify Expressions

◆ An algebraic expression is *fully simplified* when there are ___ parentheses & all like terms have been _____.

EXAMPLE

Simplify the following expressions.

(A) $-z + 2(3 + 5z)$

(B) $2a^2 - (6a^2 - b^2) + 5b^2$

HOW TO: Simplify Algebraic Expressions

- 1) **Distribute** constants/variables in ()
- 2) **Identify** like terms (*same variable/same exponent*)
- 3) **Group** like terms by writing _____ each other
- 4) **Combine** like terms (+/- _____)

PRACTICE

Simplify the following by combining like terms.

(A) $\frac{1}{2}x + \frac{3}{4}x - \frac{1}{2}y + \frac{1}{2}y$

(B) $2m + 3n - p + 4m - 2n + 5p$

TOPIC: SIMPLIFYING EXPRESSIONS

PRACTICE

Simplify the expressions.

(A) $7(x - 3) + 10$

(B) $6(2a - b) + 4(3a + 5b)$

(C) $-3[2x - (4 - x)]$

PRACTICE

Simplify the expressions.

(A) $3x^2 + 5x^3 - 2x + 4x^2 - x^3 + 8x + 10$

(B) $\frac{1}{2}x^2 + \frac{3}{4}xy - \frac{1}{3}x^2 + \frac{1}{4}xy$

EXAMPLE

Simplify the expression by first expanding and then combining like terms.

$$3x(2x^2 - 5xy) - 4y(x^2 - 2xy)$$