

TOPIC: SOLVING SYSTEMS OF LINEAR EQUATIONS BY ELIMINATION

Solving Systems of Linear Equations - Elimination

◆ Another way to solve systems of equations is by _____ the equations & _____ a variable.

► If not asked to use a specific method, use this when equations are in standard form or have large coefficients.
$$(Ax + By = C)$$

Recall	Substitution	New	Elimination
	$y = 5x - 3$ $x = 2$		$x + y = 1$ $-x + y = 5$

EXAMPLE

Solve the system of equations using elimination.

$$3x + 2y = 1$$

$$-x + y = 3$$

HOW TO: Solve Systems of Equations - Elimination

- 1) Write BOTH equations in the form $Ax + By = C$, aligning coeff's vertically on top of each other
- 2) Multiply eq'n(s) by # (+ or -) so x or y coeff's are _____ with _____ signs
- 3) _____ equations vertically to eliminate one variable, then solve for other
- 4) Plug value from 3) back into either eq'n, then solve
- 5) Check answer by plugging values into both eqn's

TOPIC: SOLVING SYSTEMS OF LINEAR EQUATIONS BY ELIMINATION

How to Multiply Equations in Elimination Method

- ◆ To determine what # to multiply by in Step 2), look at the coefficients of each equation.

Elimination Method - What to Multiply Equation(s) by to Eliminate Variable				
If coefficients of x or y are...	Equal with OPPOSITE sign	Equal with SAME sign	Factors of each other (Evenly divisible)	Anything Else
Multiply...	Nothing! Just add	Either eq'n by -1	Eq'n with smaller coeff's by quotient	Each eq'n by <i>other</i> coeff (+ or -)
EXAMPLE	$7x + 13y = 12$ $-7x + 2y = 18$	$5x + 7y = 17$ $6x + 7y = 12$	$12x - 5y = 24$ $3x - 2y = 6$	$6x + 2y = -10$ $-4x - 3y = 15$

HOW TO: Solve Systems of Equations - Elimination

- 1) Write BOTH equations in the form $Ax + By = C$, aligning coeff's vertically on top of each other
- 2) Multiply eq'n(s) by # (+ or -) so x or y coeff's are **EQUAL** with **OPPOSITE** signs
- 3) **ADD** equations vertically to eliminate one variable, then solve for other
- 4) Plug value from 3) back into *either* eq'n, then solve

TOPIC: SOLVING SYSTEMS OF LINEAR EQUATIONS BY ELIMINATION

EXAMPLE

Without *fully* solving, multiple one or both equation(s) by an appropriate factor to cancel out a variable.

Elimination Method - What to Multiply Equation(s) by to Eliminate Variable				
If coefficients of x or y are...	Equal with OPPOSITE sign	Equal with SAME sign	Factors of each other (Evenly divisible)	Anything Else
Multiply...	Nothing! Just add	Either eq'n by -1	Eq'n with smaller coeff's by quotient	Each eq'n by <i>other</i> coeff (+ or -)

$$(A) \quad \begin{aligned} 2x + 3y &= 1 \\ x - y &= 3 \end{aligned}$$

$$(B) \quad \begin{aligned} 5x + 3y &= 10 \\ -7x + 5y &= 15 \end{aligned}$$

TOPIC: SOLVING SYSTEMS OF LINEAR EQUATIONS BY ELIMINATION

PRACTICE

Use the elimination method to solve the following system of linear equations.

(A)

$$2x + y = 1$$

$$3x - y = 4$$

(B)

$$10x - 4y = 5$$

$$5x - 4y = 1$$

HOW TO: Solve Systems of Equations - Elimination

- 1) Write BOTH equations in the form $Ax + By = C$, aligning coeff's vertically on top of each other
- 2) Multiply eq'n(s) by # (+ or -) so x or y coeff's are **EQUAL** with **OPPOSITE** signs
- 3) **ADD** equations vertically to eliminate one variable, then solve for other
- 4) Plug value from 3) back into *either* eq'n, then solve
- 5) Check answer by plugging values into both eqn's