

TOPIC: FUNCTION NOTATION

Function Notation

- ◆ If an equation is a function, we can write it using **function notation** $y = f(x)$, read as "f ____ x".
- $f(x)$ represents the y -value that corresponds to the given x -value. Ex: $f(1)$ is the y -value when $x = 1$.

EXAMPLE

Evaluate $f(x) = 3x - 1$ at $x = 4$. Hint: Plug 4 in for x & simplify.

New

Function Notation

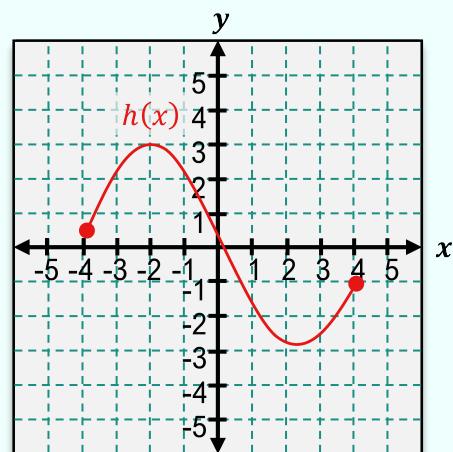
$$y = 3x - 1$$
$$f(x) = \underline{3x - 1}$$

Function name *Input* *Expression*

$$f(\quad) =$$

- ◆ You may see functions represented using different letters (_____) or without the "of x " (_____).

EXAMPLE


Evaluate the functions at the given input.

(A)

$$g = \{(-2, 3), (1, 5), (3, 2)\}$$

$$g(1) =$$

(B)

$$h(-2) =$$

TOPIC: FUNCTION NOTATION

PRACTICE

Find $f(-3)$ for the following functions.

(A)

$$f(x) = 2x^2 - 4x + 1$$

(B)

$$f(x) = \frac{x+4}{x-1}$$

EXAMPLE

Define the function $f(x)$ that defines y as a function of x in each equation. *Hint: Solve for y first.*

(A)

$$3x - 2y = 8$$

(B)

$$4x + 5y = 15$$

TOPIC: FUNCTION NOTATION

EXAMPLE

The given table shows the percentage of the U.S. population using the internet over the years indicated.

(A) Does the table define a function?

(B) What are the domain and range?

(C) If this function is defined as f , find $f(2015)$. What does this mean?

(D) If $f(x) = 92.0$, what does x equal to?

Year	Internet Users (% of population)
2000	43.1
2005	68.0
2010	74.0
2015	88.5
2020	90.0
2022	92.0