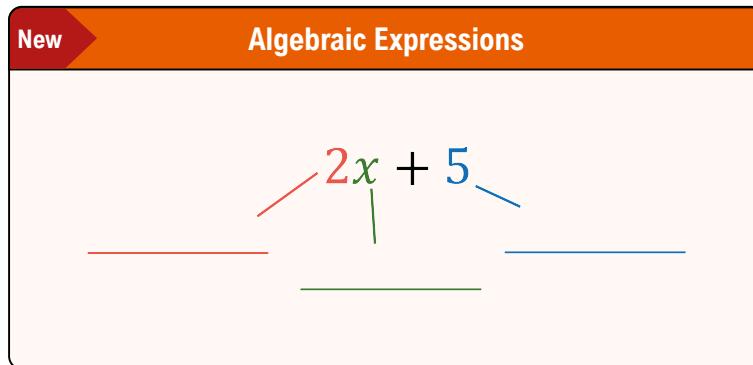


TOPIC: EVALUATING EXPRESSIONS


Evaluating Expressions

◆ An algebraic expression combines _____ and _____ using operations.

► **Variables:** letter which represents any number/value

► **Coefficients:** number multiplied by a variable

► **Constants:** number without a variable

◆ To *evaluate* an algebraic expression, _____ the variable(s) with a given value(s).

EXAMPLE

Evaluate the following algebraic expressions at the given values.

(A) $2x + 5; x = 4$

(B) $\frac{1}{2}a + 4b; a = 10, b = -6$

(C) $-8y^3; y = 2$

TOPIC: EVALUATING EXPRESSIONS

PRACTICE

Evaluate the following algebraic expression for the given value of x .

(A) $x^2 + 4x + 6; x = -2$

(B) $7x^3 + 2x - 9; x = 0$

EXAMPLE

Given a and b , find the value of each expression.

(A) $2a^2 + 5b; a = -3, b = 4$

(B) $a - 3b^2; a = -5, b = 2$

EXAMPLE

Evaluate the following expressions if $x = -\frac{3}{2}$ and $y = 9$.

(A)
$$\frac{4x + 2}{3}$$

(B) $2x - 0.5y + 20$

TOPIC: EVALUATING EXPRESSIONS

EXAMPLE

Evaluate the following expression when $x = 1, y = 4, z = -2$.

$$2x + 3y - z^2$$