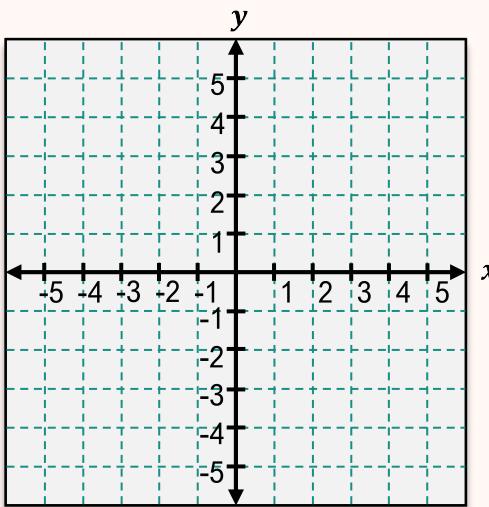


TOPIC: GRAPHING CIRCLES

Circles in Standard Form (Center-Radius Form)

- ◆ The graph of a circle is the set of all points that are the _____ distance r (radius) from the center (h, k) .
- To sketch, use _____ to plot points above, below, right, & left of _____ then connect with a smooth curve.


New

Graphing a Circle: Standard Form

$$(x - h)^2 + (y - k)^2 = r^2$$
$$(x - 2)^2 + (y + 1)^2 = 16$$

Center: $(\frac{h}{h}, \frac{k}{k})$

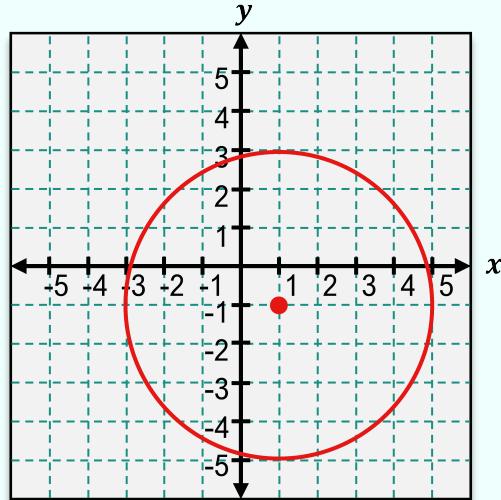
Radius:

- ◆ A circle centered at the origin $(\underline{\quad}, \underline{\quad})$ has the equation: $x^2 + y^2 = r^2$

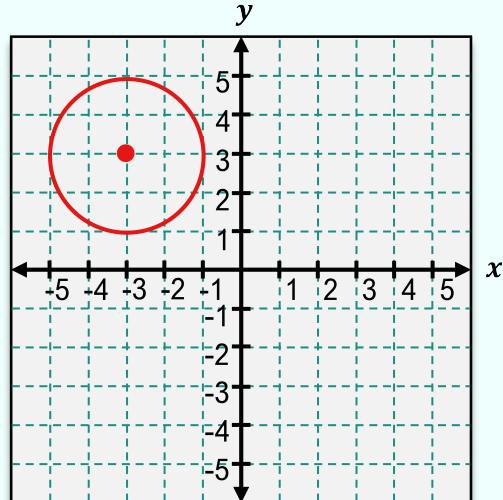
TOPIC: GRAPHING CIRCLES

PRACTICE

Give the center and radius of each circle and graph.


(A) $x^2 + y^2 = 36$

(B) $(x + 2)^2 + (y - 3)^2 = 4$


EXAMPLE

Write an equation in standard form that represents the graph of the circle.

(A)

(B)

TOPIC: GRAPHING CIRCLES

PRACTICE

Write the standard form equation of the circle described.

(A)

Centered at $(-3, 5)$; radius: 7

(B)

Centered at the origin; diameter: 10

TOPIC: GRAPHING CIRCLES

Circles in General Form

◆ You will sometimes be given the equation of a circle in **general form**.

$$x^2 + y^2 + Ax + By + C = 0$$

► Convert to **standard form** by *completing the square* for x & y , then graph.

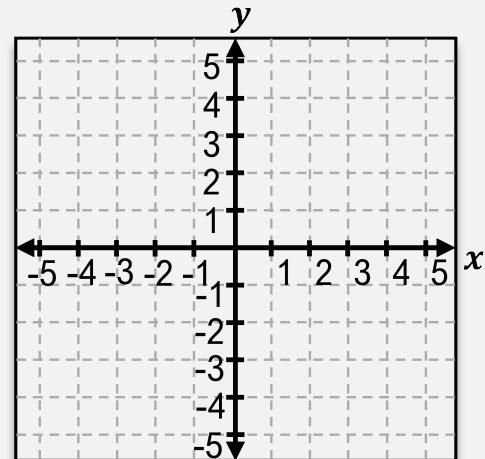
$$(x - h)^2 + (y - k)^2 = r^2 \quad \text{Standard Form}$$

$$x^2 + y^2 + 2x + 6y + 8 = 0 \quad \text{General Form}$$

Rewrite

$$(x^2 + 2x + \underline{\hspace{2cm}}) + (y^2 + 6y + \underline{\hspace{2cm}}) = -8 + \underline{\hspace{2cm}} + \underline{\hspace{2cm}}$$

Complete the Square


$$(x + 1)^2 + (y + 3)^2 = 2 \quad \text{Standard Form}$$

EXAMPLE: Convert the following equation to standard form and sketch a graph of the circle.

$$x^2 + y^2 + 2x - 4y + 1 = 0$$

GENERAL FORM → STANDARD FORM CIRCLES

- 1) Group x terms & y terms on left; constant on right
- 2) Add $\underline{\hspace{2cm}}$ to both sides for x terms
Add $\underline{\hspace{2cm}}$ to both sides for y terms
- 3) Factor to $(x + \underline{\hspace{2cm}})^2$ & simplify
- 4) Graph from $\underline{\hspace{2cm}}$ form

TOPIC: GRAPHING CIRCLES

PRACTICE

Write the standard form equation of the circle described. Give the center and radius.

(A)

$$x^2 + y^2 - 2x + 4y - 4 = 0$$

(B)

$$x^2 + y^2 - 8x - 12y + 3 = 0$$