

TOPIC: FACTORING BY GCF AND GROUPING

Factor GCF Out of Polynomials

◆ Recall: The GCF of a list of terms is the largest factor that evenly divides out of every term.

► Once we find the GCF of the terms in a *polynomial*, we can _____ it out.

New Factoring Out the Greatest Common Factor

$9t^2 - 54t$

Identify GCF: $9t^2 = 3 \cdot 3 \cdot t \cdot t$ $54t = 3 \cdot 3 \cdot 3 \cdot 2 \cdot t$ \longrightarrow **GCF:** _____

Rewrite: $= \frac{\text{_____}}{\text{GCF}}(\text{_____}) - \frac{\text{_____}}{\text{GCF}}(\text{_____})$

Factor GCF out: $= \frac{\text{_____}}{\text{GCF}}(\text{_____} - \text{_____})$

Check answer:

EXAMPLE

Factor out the GCF.

$$6x + 12x^3 - 24x^4$$

TOPIC: FACTORING BY GCF AND GROUPING

PRACTICE

Factor the GCF out of:

(A)

$$8x + 12$$

(B)

$$6x^2 + 9x$$

EXAMPLE

Factor the GCF from the polynomial.

$$10a^3b + 15a^2b^2 + 25ab^3$$

PRACTICE

Factor the GCF from the polynomial.

$$18x^3y^2 - 27x^2y^3 + 9x^4y$$

EXAMPLE

Factor the following.

$$3x(x + 4) - 5(x + 4)$$

TOPIC: FACTORING BY GCF AND GROUPING

Factor Polynomials by Grouping

- ◆ Some polynomials may not have *one* greatest common factor for _____ the terms.
- Given a four-term polynomial, try *grouping* the terms into two _____ & factoring out the _____ from each pair.

New	Factoring by Grouping	HOW TO: Factor by Grouping
	$x^3 + 2x^2 + 3x + 6$ $= (\underbrace{\quad \quad \quad}_{GCF: \underline{\quad}}) + (\underbrace{\quad \quad \quad}_{GCF: \underline{\quad}})$ $= \underline{\quad} (\underline{\quad}) + \underline{\quad} (\underline{\quad})$ $= (\quad \quad \quad)(\quad \quad \quad)$	1) Group terms into 2 pairs (rearrange if needed) 2) Factor out GCF from each pair 3) If the terms share common binomial , factor it out. 4) Check answer by multiplying factors

TOPIC: FACTORING BY GCF AND GROUPING

PRACTICE

Use grouping to factor out the polynomial.

(A)

$$xy + 2x + 3y + 6$$

(B)

$$2ab + 4a + 3b^2 + 6b$$

EXAMPLE

Completely factor the following by first rearranging the terms.

(A)

$$y^2 + 26 + 27y + 156$$

(B)

$$ab - 2a - 6 + 3b$$

EXAMPLE

Completely factor the following. *Hint: Always factor out the GCF first.*

$$6x^2y + 12xy^2 - 9x - 18y$$