

TOPIC: SOLVING LINEAR EQUATIONS

Introduction to Linear Equations

- ◆ Recall: An **equation** is a statement that two algebraic **expressions** are equal.

- ◆ The **solution** to an equation is the value of the variable that makes the statement _____ when plugged in.

EXAMPLE

Determine whether the given value is a solution to the equation.

(A)

$$2x + 6 = 0 ; x = -3$$

(B)

$$5 = 8w - 3 ; w = -1$$

- ◆ For a linear equation, write the **solution set** by putting the solution in set brackets { }.

TOPIC: SOLVING LINEAR EQUATIONS

EXAMPLE

Determine whether each of the following is a linear equation in one variable.

(A) $4x - 7 + 3$

(B) $5y - y = 2$

(C) $6x + 1 = 2t^2$

PRACTICE

Identify the following as either an expression or equation.

(A) $\frac{2m}{3} + 8$

[EXPRESSION | EQUATION]

(B) $4(a - 2) = 21$

[EXPRESSION | EQUATION]

PRACTICE

Which of the following is a linear equation in one variable?

A. $x + 5 = 12$

B. $x^2 = 25$

C. $y + z = 10$

D. $x - 3 < 7$

TOPIC: SOLVING LINEAR EQUATIONS

PRACTICE

Which of the following is a linear equation in one variable?

- A. $2(x + 5) - 3x = x^2 + 1$
- B. $x(x + 4) = 0$
- C. $4(x + 3) = 2x + 18$
- D. $x^2 + 5x = 10$

PRACTICE

Verify that the given value is a solution to the equation.

(A)
 $y = -2; 5y + 4 = 14$

[SOLUTION | NOT A SOLUTION]

(B)
 $a = 2; 4a + 3 = 2a + 9$

[SOLUTION | NOT A SOLUTION]

TOPIC: SOLVING LINEAR EQUATIONS

Addition and Subtraction Properties of Equality

◆ To **solve** an equation, _____ the variable using operations like **addition** and **subtraction**.

► Operations must **ALWAYS** be done to _____ sides of an equation to create *equivalent equations*.

Addition Property of Equality	Subtraction Property of Equality
<p>If $a = b$, then $a \underline{\quad} = b \underline{\quad}$</p> <p>Use when eqn has [ADDITION SUBTRACTION]</p> $x - 6 = 0$ $x - 6 \underline{\quad} = 0 \underline{\quad}$ $\underline{\quad} = \underline{\quad}$	<p>If $a = b$, then $a \underline{\quad} = b \underline{\quad}$</p> <p>Use when eqn has [ADDITION SUBTRACTION]</p> $0 = x + 2$ $0 \underline{\quad} = x + 2 \underline{\quad}$ $\underline{\quad} = \underline{\quad}$

◆ Check your solution by replacing variable in original equation & verifying that it makes the statement **true**.

EXAMPLE

Solve the linear equation, then check your solution.

$$y - 1.2 = 5.8$$

TOPIC: SOLVING LINEAR EQUATIONS

PRACTICE

Solve the given linear equation using addition and subtraction properties of equality.

(A)

$$x + \frac{2}{8} = -\frac{3}{8}$$

(B)

$$-5.4 + c = 1.6$$

PRACTICE

Solve the given linear equation using addition and subtraction properties of equality.

(A)

$$6h - (-12) = 5 + 5h$$

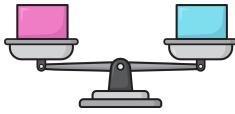
(B)

$$2(x + 5) = 3(x - 1)$$

(C)

$$3(y + 3) + (1 - y) = 3y + 14$$

EXAMPLE


Translate the following statement into a linear equation and solve.

A number decreased by 7 is equal to 15. What is the number?

TOPIC: SOLVING LINEAR EQUATIONS

Multiplication and Division Properties of Equality

◆ Recall: Solve a linear equation by using operations done to **both** sides to isolate the variable.

► **Multiplication** and **division** can also be used to create *equivalent equations*.

<i>Multiplication Property of Equality</i>	<i>Division Property of Equality</i>
<p>If $a = b$, then $a \underline{\quad} = b \underline{\quad}$</p> <p><i>Use when eqn has [MULTIPLICATION DIVISION]</i></p> $\frac{x}{2} = 9$ $\frac{x}{2} \underline{\quad} = 9 \underline{\quad}$ $\underline{\quad} = \underline{\quad}$	<p>If $a = b$, then $a = b$</p> <p><i>Use when eqn has [MULTIPLICATION DIVISION]</i></p> $20 = 5x$ $20 = 5x$ $\underline{\quad} = \underline{\quad}$

◆ Isolate the variable *term* using _____ BEFORE using \times/\div to fully isolate *variable*.

EXAMPLE

Solve the linear equation, then check your solution.

$$3a - 4 = 11$$

TOPIC: SOLVING LINEAR EQUATIONS

EXAMPLE

Solve the linear equation, then check your solution.

$$1.2a + 2.3 = 5.9$$

PRACTICE

Solve the given linear equation using multiplication and division properties of equality.

(A)

$$-8x = 64$$

(B)

$$\frac{y}{4} = -\frac{21}{6}$$

(C)

$$\frac{126}{14} = 3y$$

PRACTICE

Solve the given linear equation, then check your answer.

(A)

$$-(h + 3) = 11$$

(B)

$$0.5t + 1.5t = 7 + 3 - 4$$

TOPIC: SOLVING LINEAR EQUATIONS

EXAMPLE

Translate the following statement into a linear equation and solve.

Three times L equals 54. What is the value of L ?

TOPIC: SOLVING LINEAR EQUATIONS

Multiplication Property for Fraction Coefficients

◆ If the variable in a linear equation has a fraction **coefficient**, cancel by multiplying both sides by its _____.

► Recall: The product of a **number** and its **reciprocal** is 1. For example, $\frac{2}{3} \cdot \frac{3}{2} = 1$

EXAMPLE

Solve the following equations.

(A)

$$\frac{3}{4}x = 9$$

(B)

$$10 = \frac{5}{3}y$$

Recall

If $a = b$,
then $ac = bc$

PRACTICE

Solve the given linear equation, then check your answer.

$$\frac{1}{2} = \frac{3}{4}x$$

TOPIC: SOLVING LINEAR EQUATIONS

TOPIC RESOURCE: PROPERTIES OF EQUALITY

Name	Use when equation has...	Property of Equality	Example
		If $a = b$, then...	
<i>Addition</i>	-	$a + c = b + c$	$\begin{aligned}x - 6 &= 0 \\ x - 6 + 6 &= 0 + 6 \\ x &= 6\end{aligned}$
<i>Subtraction</i>	+	$a - c = b - c$	$\begin{aligned}0 &= x + 2 \\ 0 - 2 &= x + 2 - 2 \\ -2 &= x\end{aligned}$
<i>Multiplication</i>	\div	$ac = bc$	$\begin{array}{ l l }\hline \frac{x}{2} = 24 & \frac{3}{4}x = 9 \\ 2 \cdot \frac{x}{2} = 24 \cdot 2 & \frac{4}{3} \cdot \frac{3}{4}x = 9 \cdot \frac{4}{3} \\ x = 48 & x = 12 \\ \hline\end{array}$
<i>Division</i>	\times	$\frac{a}{c} = \frac{b}{c}$	$\begin{aligned}20 &= 5x \\ \frac{20}{5} &= \frac{5x}{5} \\ 4 &= x\end{aligned}$

TOPIC: SOLVING LINEAR EQUATIONS

Strategy for Solving Linear Equations

- ◆ To solve **ANY** linear equation, *simplify* & then use *multiple* properties of equality. You can follow these steps:

EXAMPLE

Solve the linear equation.

$$3(x - 2) + 2 = x + 8$$

HOW TO: Solve Linear Equations

- 1) Simplify** both sides of the equation
 - *Distribute* into ()
 - *Combine* like terms
- 2) Use _____ props. to collect:**
 - All *variable* terms on one side
 - All *constant* terms on other side
- 3) Use _____ props. to isolate variable**
- 4) Check** solution by plugging in *orig. eqn*

Recall

If $a = b$, then...

$$\begin{array}{c|c} a + c = b + c & ac = bc \\ a - c = b - c & \frac{a}{c} = \frac{b}{c} \end{array}$$

(Properties of Equality)

TOPIC: SOLVING LINEAR EQUATIONS

PRACTICE

Solve the given linear equation. Check your solution.

(A)

$$2(x + 3) = 14$$

(B)

$$-5 - y = 3(y + 9)$$

HOW TO: Solve Linear Equations

1) Simplify both sides of the equation

- *Distribute* into ()
- *Combine* like terms

2) Use +/– props. to **collect**:

- All *variable* terms on one side
- All *constant* terms on other side

3) Use ×/÷ props. to **isolate** variable

4) Check solution by plugging in *orig. eqn*

PRACTICE

Solve the given linear equation. Check your solution.

$$4(x + 1) - 3(x - 2) = 2x + 5$$