

TOPIC: SIMPLIFYING RADICAL EXPRESSIONS

Product Rule of Radicals

- ◆ Square roots can be simplified using the **Product Rule** (Multiplication Rule).

New

Product Rule for Square Roots

$$\sqrt{9} \cdot \sqrt{4} \quad \sqrt{9 \cdot 4}$$

$$\sqrt{a} \cdot \sqrt{b} \quad \sqrt{a \cdot b}$$

- ◆ Use in both directions: _____ the product of 2 radicals into 1 **OR** _____ 1 radical to the product of 2.

EXAMPLE

Use the product property to simplify each radical expression.

(A) $\sqrt{3} \cdot \sqrt{11}$

(B) $\sqrt{2} \cdot \sqrt{8}$

(C) $\sqrt{50}$

Hint: Rewrite 50 as a product so that one of its factors is a perfect square.

- ◆ The product rule can be applied to any radicals of the _____ index:

New

$\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$

TOPIC: SIMPLIFYING RADICAL EXPRESSIONS

EXAMPLE

Use the product property to simplify the radical expression.

$$\sqrt[3]{4} \cdot \sqrt[3]{2}$$

PRACTICE

Use the product rule to multiply the following.

(A) $\sqrt{6} \cdot \sqrt{5}$

(B) $\sqrt{5x} \cdot \sqrt{7y}$

PRACTICE

Use the product rule to multiply the following.

(A) $\sqrt[4]{7m^2} \cdot \sqrt[4]{2n}$

(B) $\sqrt{8} \cdot \sqrt[3]{2}$

PRACTICE

Use the product rule to rewrite the term inside the radical as a product, then simplify.

(A) $\sqrt{180}$

(B) $-\sqrt{72x^2}$

TOPIC: SIMPLIFYING RADICAL EXPRESSIONS

Quotient Rule of Radicals

- ◆ Like the product rule, you can use the **quotient rule** to simplify radicals.

New **Quotient Rule for Square Roots**

$$\sqrt{\frac{64}{4}} = \frac{\sqrt{64}}{\sqrt{4}}$$
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

- ◆ Use in both directions: To *split* 1 radical to the quotient of 2 **OR** *condense* the quotient of 2 radicals into 1.

EXAMPLE

Use the quotient property to simplify each radical expression.

$$(A) \sqrt{\frac{144}{25}}$$

$$(B) \sqrt{\frac{9}{49}}$$

$$(C) \sqrt{\frac{300}{3}}$$

- ◆ The quotient rule can be applied to any radicals of the _____ index:

New

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

TOPIC: SIMPLIFYING RADICAL EXPRESSIONS

EXAMPLE

Use the quotient rule to simplify the radical expression.

$$\sqrt[3]{\frac{64}{343}}$$

PRACTICE

Use the quotient rule to simplify.

(A)

$$\sqrt{\frac{2}{81}}$$

(B)

$$\sqrt{\frac{x^2}{36}}$$

PRACTICE

Use the quotient rule to simplify.

(A)

$$\sqrt[3]{\frac{t}{8}}$$

PRACTICE

Use the quotient rule to divide, then simplify.

(A)

$$\frac{\sqrt{75}}{\sqrt{3}}$$

(B)

$$\frac{\sqrt{144}}{\sqrt{16}}$$