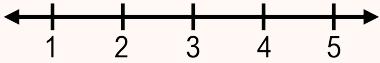
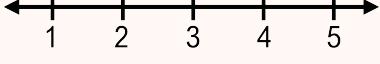


TOPIC: LINEAR INEQUALITIES IN ONE VARIABLE

Introduction to Linear Inequalities

- ◆ A **linear equation** with an _____ symbol instead of an equal sign is a **linear inequality**.
- Just like a linear eqn, the **solution** of a linear inequality is the value(s) of x that makes the inequality *true*.



Recall	Linear Equation	New	Linear Inequality
$ax + b = c$ $2x - 6 = 0$ $x = 3$ Solution: _____ value $2(3) - 6 = 0$ $0 = 0 \checkmark$	$ax + b < c$ $2x - 6 > 0$ $x > 3$ Solution: _____ of values $2(\quad) - 6 > 0$ $\quad > 0$		

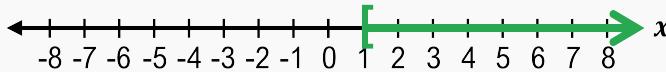
TOPIC: LINEAR INEQUALITIES IN ONE VARIABLE

Representing Solutions to Linear Inequalities

◆ Since the solution to an inequality is a *range* of values, there are different ways to represent & visualize it.

- **Exclude** a value with parentheses **()**. In interval notation, always use parentheses for _____.
- **Include** a value with square brackets **[]**.

Inequality	Set Builder Notation	Number Line (Graph)	Interval Notation
$x > 3$	$\{ \quad \quad \}$ <i>"the set of x such that x is greater than 3"</i>		
$x \geq 3$	$\{ \quad \quad \}$		
$x < 3$	$\{ \quad \quad \}$		
$x \leq 3$	$\{ \quad \quad \}$		


◆ When graphing, values can also be **excluded** with an open circle **○** or **included** with a closed circle **●**.

TOPIC: LINEAR INEQUALITIES IN ONE VARIABLE

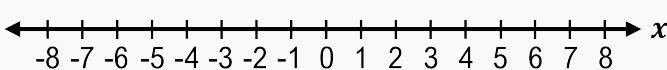
PRACTICE

Which inequality matches the graph?

(A)

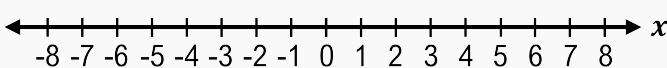
- A. $x \geq 1$
- B. $x \leq 1$
- C. $x > 1$
- D. $x < 1$

(B)


- A. $x \geq 1$
- B. $x \leq 1$
- C. $x > 1$
- D. $x < 1$

PRACTICE

Use the number line to graph the following inequality.


(A)

$$x \geq 6$$

(B)

$$x \geq -7$$

PRACTICE

Write the following in interval notation.

(A)

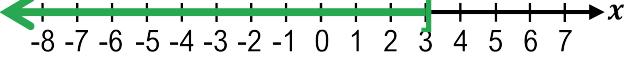
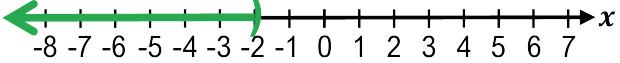
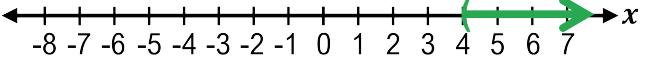
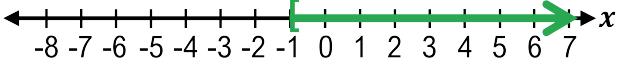
$$x \geq 0$$

(B)

$$x < 7$$

TOPIC: LINEAR INEQUALITIES IN ONE VARIABLE

PRACTICE





Rewrite the following as an inequality statement.

(A) $(-\infty, 2]$

(B) $(1, \infty)$

EXAMPLE

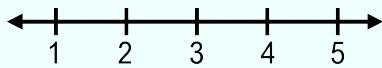
Match the inequalities, interval notation, and graphs in Column A with their corresponding items in Column B.

A	B
$x > -2$	$-1 \leq x$
$x \geq -5$	
$(4, \infty)$	$(-2, \infty)$
$(-\infty, 3]$	$[-5, \infty)$
	$(-\infty, -2)$

TOPIC: LINEAR INEQUALITIES IN ONE VARIABLE

Solving Linear Inequalities

- ◆ The same properties used to solve linear **equations** by isolating the variable can be used for linear **inequalities**.


Property	If $a > b$, then...	Example
<i>Addition & Subtraction</i>	$a + c > b + c$	$x - 3 > 11$
	$a - c > b - c$	
<i>Multiplication & Division for <u> </u> c</i>	$ac > bc$	$2 < \frac{x}{5}$
	$\frac{a}{c} > \frac{b}{c}$	
<i>Multiplication & Division for <u> </u> c</i>	$ac < bc$	$-7x \geq 21$
	$\frac{a}{c} < \frac{b}{c}$	

- ◆ When multiplying or dividing by a **negative** number, you must _____ the inequality symbol.

EXAMPLE

Solve the given linear inequality, then graph your answer & express in interval notation.

$$x + 8 \leq 12 - x$$

TOPIC: LINEAR INEQUALITIES IN ONE VARIABLE

PRACTICE

Solve the following linear inequalities using the addition and subtraction properties of equality.

(A)

$$5 \leq y + 3$$

(B)

$$x - 2.3 \leq 4.1$$

PRACTICE

Solve the following linear inequalities and write the solution in interval notation.

(A)

$$7x + 3 < 2x + 13$$

(B)

$$2(x + 4) \leq 3(x - 1) + x$$

(C)

$$-\frac{5}{6}x < 3$$

EXAMPLE

Solve the following inequalities.

(A)

$$2x - 5 < 2x + 10$$

(B)

$$x + 2 \geq x + 8$$