

## **TOPIC: INTRODUCTION TO LOGARITHMIC FUNCTIONS**

### **Intro to Logarithms**

- ◆ A **logarithm** is the **exponent** that some **base** must be raised to in order to equal a particular number.

| New | Logarithmic Function                                                                                                                                                                                                                                                                                                                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $2^y = 4 \rightarrow y = \underline{\hspace{2cm}}$                                                                                                                                                                                                                                                                                                                |
|     | $2^y = 8 \rightarrow y = \underline{\hspace{2cm}}$                                                                                                                                                                                                                                                                                                                |
|     | $2^y = 10 \rightarrow y = \underline{\hspace{2cm}}$                                                                                                                                                                                                                                                                                                               |
|     | <p style="text-align: center;"><i>"log base b of x"</i></p> <div style="border: 1px solid black; padding: 10px; display: inline-block;"><math>y = \log_b x</math>      <math>x = b^y</math></div> <p style="text-align: right;"><math>x &gt; 0</math><br/><math>b &gt; 0, b \neq 1</math></p> <p style="text-align: center;"><i>base</i>      <i>argument</i></p> |

- ◆ The **logarithmic function**  $f(x) = \log_b x$  is the \_\_\_\_\_ of the exponential function.

### **EXAMPLE**

Find the inverse of the one-to-one function  $f(x) = 5^x$ .

**Replace  $f(x)$  with  $y$ :**

**Switch  $x$  &  $y$ :**

**Solve for  $y$ :**

## TOPIC: INTRODUCTION TO LOGARITHMIC FUNCTIONS

### Converting Between Exponential & Logarithmic Form

Recall

$$y = \log_b x \leftrightarrow x = b^y$$

- ◆ Recall: A **log** is the **exponent** that some **base** must be raised to in order to equal a particular number.

| Exponential Form               | Logarithmic Form                                                    |
|--------------------------------|---------------------------------------------------------------------|
| $3^4 = 81$<br>Exponent<br>Base | $\log \boxed{\phantom{00}} = \boxed{\phantom{00}}$<br>Base Exponent |

### EXAMPLE

Write each log in exponential form & each exponential form in log form.

(A)  $\log_2 16 = 4$

(B)  $x = \log_5 800$

(C)  $10^x = 4500$

## **TOPIC: INTRODUCTION TO LOGARITHMIC FUNCTIONS**

### **PRACTICE**

Rewrite the exponential equation as a logarithmic equation.

**(A)**

$$3^x = 9$$

**(B)**

$$6^{-3} = \frac{1}{216}$$

**(C)**

$$2^y = 3.249$$

### **PRACTICE**

Rewrite the logarithmic equation as a exponential equation.

**(A)**

$$\log_5(25) = 2$$

**(B)**

$$\log_3\left(\frac{1}{27}\right) = -3$$

**(C)**

$$\log_4 x = 1.5$$

## TOPIC: INTRODUCTION TO LOGARITHMIC FUNCTIONS

### Basic Properties of Logarithms

- ◆ You can evaluate many logarithms using properties that come from the log being the \_\_\_\_\_ of an exponential.

| PROPERTIES OF LOGARITHMS |                                                                                      |                                        |                                                   |
|--------------------------|--------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|
| Name                     | EXAMPLE                                                                              | Property                               | Description                                       |
| <i>Inverse Property</i>  | $\log_2 2^3 = \underline{\hspace{2cm}}$<br>$2^{\log_2 3} = \underline{\hspace{2cm}}$ | $\log_b b^x = x$<br>$b^{\log_b x} = x$ | Logs & exponentials w/ the <b>same base</b> _____ |
| <i>Log of the Base</i>   | $\log_2 2 = \underline{\hspace{2cm}}$                                                | $\log_b b = 1$                         | Log of its <b>base</b> equals _____               |
| <i>Log of 1</i>          | $\log_2 1 = \underline{\hspace{2cm}}$<br>_____ "2 to what power gives 1"             | $\log_b 1 = 0$                         | ANY log of <b>1</b> equals _____                  |

### EXAMPLE

Use the properties above to evaluate the given logarithms.

(A)  $\log_{10} 10$

(B)  $\log_7 1$

(C)  $\log_4 16$

(D)  $\log_5 \frac{1}{5}$

Recall  
$$\frac{1}{a^n} = a^{-n}$$

## TOPIC: INTRODUCTION TO LOGARITHMIC FUNCTIONS

### EXAMPLE

Evaluate the logarithm.

$$\log_4 \sqrt[3]{4}$$

Recall

$$a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

### PRACTICE

Evaluate the given expression.

$$5^{\log_5 12}$$

### PRACTICE

Evaluate the given logarithms.

(A)

$$\log_y \sqrt{y}$$

(B)

$$\log_x 1$$