
CONCEPT: REDUCTION OF MONOSACCHARIDES

Reduction of Aldose and Ketose Sugars

● The carbonyl group is reduced via a reducing agent to a	(–OH) group to create a sugar alcohol.
□ Sugar Alcohol: a monosaccharide that has carbons connected to an –OH group.	
□ Reducing Agent:, □ Catalysts:,	, or
- The carbonyl oxygen gains a and the carbony	/l carbon gains a

EXAMPLE: Determine the sugar alcohol product formed from the reduction of the following monosaccharide.

$$\begin{array}{c}
CH_2OH \\
C=O \\
HO-C-H \\
HO-C-H \\
CH_2OH
\end{array}$$
Ni

PRACTICE: Determine which aldose reactant should be used to produce the following sugar alcohol.

CONCEPT: REDUCTION OF MONOSACCHARIDES

Common Naming of Sugar Alcohols

- Set of rules for naming sugar alcohols are similar to aldose or ketose sugars.
 - □ Modify the ending from -____ to -___.

EXAMPLE: Provide the structure and common name for the sugar alcohol created from the reduction reaction.

PRACTICE: What is the common name of the sugar alcohol produced when D-galactose is reduced?

- a) L-galactose
- b) D-galactitol
- c) D-galactaric acid
- d) L-galactitol

PRACTICE: Draw the Fischer projection for the reduction product of D-mannose, the C-2 epimer of glucose. What is the structure and common name of the sugar alcohol produced?

D-Glucose