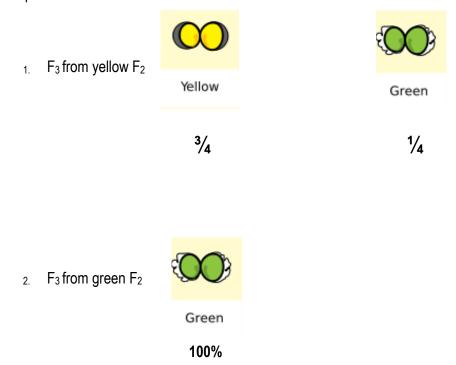

CONCEPT: MENDELS EXPERIMENTS AND LAWS

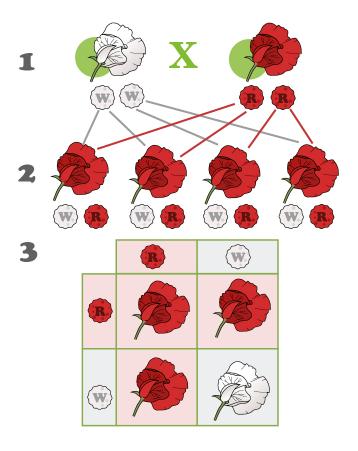

Mendel's Experiments

- Gregor Mendel was an Austrian monk who studied Genetics using pea plants
 - ☐ Mendel used **pure lines** meaning that all offspring produced by pure line mating will be identical for that trait
 - Ex: Yellow-seeded pure line mating will produce yellow-seeded offspring
 - □ Mendel labeled each generation in a specific way
 - Parental (P) Generation: Is the first mating that occurs
 - First Filial (F₁) Generation: is the offspring produced from parental mating
 - These often undergo **self-mating** where one plant's pollen is used to fertilize itself
 - Can also undergo **cross-fertilization** where one plant's pollen is used to fertilize another plant
 - Second Filial (F₂) Generation: is the offspring produces from F₁ mating

EXAMPLE: One of Mendel's Crosses

Each F2 plant was "selfed"

Then, he did an different cross. He mated a F₁ yellow with a green


At the end of these crosses he knew

- 1. Yellow seeded plants always produced at least some yellow seeded offspring
- 2. Selfed, green seeded plants only produced other green seeded offspring
- 3. The green seeded plant trait could skin generations

Mendel's Laws

- By studying pea plants, Mendel came up with certain properties and laws that govern inheritance
 - □ The properties include:
 - There is a heredity factor (gene) that is necessary for producing a certain trait
 - This gene comes in two forms (alleles)
 - One form (allele) is dominant to the other
 - □ Mendel's Laws include:
 - 1. Law of segregation: Alleles separate (during meiosis) to form gametes.
 - Each gamete contains a single allele for each trait
 - 2. Law of Dominance: Some alleles are dominant, and others are recessive
 - 3. Law of independent Assortment: Genes for different traits segregate into gametes independently
 - Genes are randomly, and independently, put into gametes

EXAMPLE: A cross of white (W) and red (R) flowers

