

CONCEPT: DIPOLE MOMENT

- Recall, Electronegativity (EN) is a measurement of an element's ability to attract electrons to itself.
 - □ Periodic Trend: Electronegativity _____ moving from left to right across a period and going up a group.

- Dipole Moment: Polarity that arises when elements in a bond have a significant difference in their electronegativities.
 - □ **Polarity:** _____ sharing of electrons between bonding atoms.
 - □ A difference in electronegativity greater than _____ is considered significant.
 - Difference in Electronegativity (ΔEN) = _____ electronegativity value _ ____ electronegativity value.
 - ☐ The dipole moment is illustrated by a *dipole arrow* that points towards the _____ electronegative element.

EXAMPLE: Calculate the difference in electronegativity values between carbon and fluorine.

- a) 0.5
- b) 2.0

- c) -1.5
- d) 1.5
- e) 0.0

PRACTICE: Arrange the following molecules in order of decreasing dipole moment.

H–I

H–F

H–Br

H–CI

CONCEPT: DIPOLE MOMENT

Further Chemical Bond Classifications

- The difference in electronegativities between two elements can determine the type of chemical bond present.
 - □ The ____ difference in electronegativity then ____ the polarity of the bond.

Bond Classifications		
Electronegative Difference (△EN)	Bond Type	Bond Illustration
Zero (0.0)		 : Br←:→ Br:
Sma ll 0.1 – 0.4)		•• • C ←; → H
Intermediate (0.5 – 1.7)		CI
Large (> 1.7)		CI-: Na ⁺

EXAMPLE: For those listed below, which has the most polar bond?

a) S-Se

b) S-H

c) CI-F

d) S-F

e) S-O

PRACTICE: Which of the following correctly identifies the chemical bond between a carbon and oxygen atom?

a) Polar Covalent

b) Pure Covalent

c) Nonpolar Covalent

d) Ionic