
CONCEPT: INTRO TO BUFFERS

• Acid-Base Buffers are solutions which _____ drastic changes in pH by _____ additional acid or base.

□ A Buffer contains both _____ and ____, which neutralizes added ____ and ____ ions, respectively.

Buffer Creation

• There are ____ ways to create a Buffer:

Buffer Creation	
1. Weak acid or base +	0.40 M NH ₃ and 0.40 M NH ₄ ⁺ - ideal buffer: [weak] [conj.]
2. Strong Acid + Weak Base - weak base needs to be []	0.20 M HCl and M CH ₃ NH ₂
3. Strong Base + Weak Acid - weak acid needs to be []	1.3 M KNH ₂ and M H ₂ SO ₃

EXAMPLE: Select ALL pair(s) that could form a buffer solution.

a) CH₃CO₂H and HF

b) HNO₃ and NH₃

c) HCl and NaCl

d) KOH and HCN

e) NaBr and NaOH

PRACTICE: Which pairs of compounds are capable of making a buffer? Select all that apply.

a) 1.3 M LiOH and 1.7 M HCOOH

c) 0.35 M CH₃CO₂H and 0.35 M NaOH

b) 0.784 M NH₄+ and 0.800 M HClO₄

d) 0.80 HNO₃ and 0.15 MgO

CONCEPT: INTRO TO BUFFERS

Buffer Capacity		
The of acid or base that a buffer can	before the pH of the solution starts to noticeably change.	
□ The the concentration of buffer components, the the buffer capacity		
concentrations of WA and CB = better buffer		
EVANDLE MULL CIL CIL CIL CIL CIL CIL		
EXAMPLE : Which of the following combinations would make a buffer with the greatest buffering capacity? (1 L solution.)		
a) 0.25 moles $HCIO_2$ and 0.20 moles $NaCIO_2$	c) 0.35 moles HNO_2 and 0.30 moles KNO_2	
b) 0.35 moles HClO ₂ and 0.25 moles NaClO ₂	d) 0.50 moles HNO ₂ and 0.48 moles KNO ₂	
Buffer Range		
 Buffer is effective as long as it has the right concentration of weak species to its 		
□ Buffer Range : WA:CB = or	<u> </u>	
- Buffer is ideal when [WA] = [CB]		
□ Larger the in []s betwee	en weak species and its conjugate, the less effective a buffer will be.	
EXAMPLE : Which of the following combinations would create the most effective buffer?		
a) 1.2 M CH $_3$ NH $_2$ and 1.0 M CH $_3$ NH $_3$ +	c) 0.25 M CH ₃ NH ₂ and 1.5 M CH ₃ NH ₃ +	
b) 1.3 M CH_3NH_2 and 0.78 M CH_3NH_3^+	d) 0.68 M CH $_3\text{NH}_2$ and 6.8 M CH $_3\text{NH}_3^+$	

PRACTICE: Determine which of the following actions will destroy a buffer composed of 0.50 L of 1.44 M H₃PO₄ and 0.60 L of 1.25 M NaH₂PO₄.

- a) Addition of 1.45 moles of KH₂PO₄
- b) Addition of 0.85 moles of HCl
- c) Addition of water
- d) Addition of 0.30 moles of $Ca(OH)_2$
- e) Addition of 0.70 moles of HIO₄