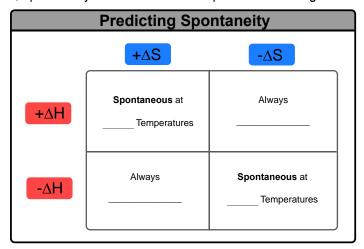

CONCEPT: GIBBS FREE ENERGY

- Gibbs Free Energy (△G) is a measure of energy _____ of a chemical or physical process that can be used to do work.
 - □ Sign of _____ and/or value of equilibrium _____ determine the spontaneity of a reaction.



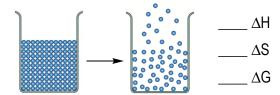
EXAMPLE: If ΔG is small and positive, which of the following statements is true?

- a) the forward reaction is spontaneous and system is far from equilibrium
- b) the forward reaction is spontaneous and system is near equilibrium
- c) the reverse reaction is spontaneous and system is far from equilibrium
- d) the reverse reaction is spontaneous and system is near equilibrium

Predicting Spontaneity

• When sign of ΔG is unknown, spontaneity of a reaction can be predicted from signs of Enthalpy (ΔH) and Entropy (ΔS).

EXAMPLE: $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ At 25°C, $\Delta H^\circ = -92.50$ kJ. Which of the following statements is(are) true?


- a. This is an endothermic reaction.
- b. If the temperature is increased, the ratio of $[PCI_5]/[PCI_3][CI_2]$ will increase.
- c. ΔS° for this reaction is negative.
- d. ΔG° for this reaction has to be negative at all temperatures.

CONCEPT: GIBBS FREE ENERGY

PRACTICE: The chemical reaction 2 NO₂Br (g) \rightarrow 2 NO₂ (g) + Br₂ (g) has a Keq = 4.50 x 10⁵.

Does the reaction increase the entropy of the Universe? Explain.

PRACTICE: What are the signs of ΔH , ΔS and ΔG for the spontaneous conversion of a solid into gas?

PRACTICE: Consider the combustion of butane gas and predict the signs of ΔS , ΔH and ΔG .

$$C_4H_{10}(g) + 13/2 O_2(g) \rightarrow 4 CO_2(g) + 5 H_2O(g)$$

PRACTICE: You calculate the value of ΔG for a chemical reaction and get a positive value. Which would be the most accurate way to interpret this result?

- a) If a mixture of reactants and products is created and left to equilibrate, the equilibrium mixture will contain more reactant than product.
- b) If a mixture of reactants and products is created, we cannot say anything about its composition at equilibrium but we can say it will reach equilibrium very rapidly.
- c) The reaction will not occur under any circumstances.
- d) If a mixture of reactants and products is created and left to equilibrate, the equilibrium mixture will contain more product than reactant.