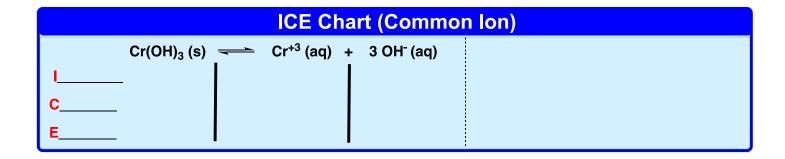

CONCEPT: Ksp: COMMONION EFFECT

- Common ion effect _____ the solubility of a solid in a solution
 - □ Occurs when an ionic solid dissolves in a solution containing ion(s) _____ to it.
 - □ Decrease in solubility is due to *Le Chatelier's principle*.

EXAMPLE: Determine molar solubility of $CuCO_3$ (Ksp = 2.4×10^{-10}) in 0.15 M MgCO_3 solution.


- **STEP 1:** Set up an ICE Chart with solid as the only reactant; cross out the reactant side.
- STEP 2: Using INITIAL ROW, place the amount given for the ______ ion(s).
- **STEP 3:** We lose reactants to make products.
 - □ Using the CHANGE ROW, place a _____ for the products
- STEP 4: Using the EQUILIBRIUM ROW, set up the equilibrium constant expression with and solve for .
 - □ Variable x and its number can be ______ if it follows a real number
- **STEP 5:** Convert found value of x into appropriate units if necessary.

CONCEPT: Ksp: COMMONION EFFECT

Common Ion Effect: Acids & Bases

- A common ion effect can also occur with _____ and _____.
 - □ Solubility of base _____ if solution contains [OH-]; solubility of acid _____ if solution contains [H+]

EXAMPLE: Find solubility (g/mL) of Cr(OH)₃ (Ksp = 6.7×10^{-31}) if the solution is buffered at pH of 8.4 at 25° C.

- **STEP 1:** Set up an ICE Chart with solid as the only reactant; cross out the reactant side.
- STEP 2: Using INITIAL ROW, place the amount given for the ______ ion(s).
 - □ Calculate [OH-] or [H+] from given pH or pOH.
- STEP 3: We lose reactants to make products.
 - □ Using the **CHANGE ROW**, place a _____ for the products
- STEP 4: Using the EQUILIBRIUM ROW, set up the equilibrium constant expression with _____ and solve for ___.
 - □ Variable x and its number can be ______ if it follows a real number
- **STEP 5:** Convert found value of x into appropriate units if necessary.

CONCEPT: Ksp: COMMONION EFFECT

PRACTICE: Which of the following compounds will become more soluble in basic solution?

- a) $PbF_2(s)$
- b) ZnCl₂(s)
- c) AI(OH)₃ (s)
- d) MgCO₃ (s)

PRACTICE: A solution of Ba(OH)₂ has a Ksp of 5.0 x 10-3.

- i) Determine the pH of this solution.
- ii) Determine the pH if Ba(OH)₂ was added to a solution containing 3.2 M of BaF₂ and 0.94 M of Al(OH)₃.