□ Normally cor	nbustion reactions involves a compound of	(hydrocarbon) or	reacting with O ₂ .
□ The products	s formed are and		
	Combustion of Carbon C $\begin{array}{cccccccccccccccccccccccccccccccccccc$	* +	
Combustion of Carbo	n Compounds		
	roxysuccinic acid is responsible for the acidulous doxygen. If combustion of 12.01 g of this acid cr		·
STEP 1: Convert the g	rams of CO ₂ to grams of		
	rams of CO_2 to grams of rams of H_2O to grams of		
STEP 2: Convert the g		ms of the sample to determine	e the 3 rd element.
STEP 2: Convert the gi	rams of H_2O to grams of	ms of the sample to determine	e the 3 rd element.
STEP 2: Convert the gr	rams of H_2O to grams of subtract the grams of STEPS 1 & 2 from the gram		
STEP 2: Convert the gr STEP 3: If necessary, s STEP 4: Convert all the	e masses into	o obtain whole numbers for e	

CONCEPT: COMBUSTION ANALYSIS
PRACTICE: An unknown compound is composed of carbon, hydrogen and oxygen. A 4.30 g sample is ignited and creates
8.59 g CO ₂ and 3.52 g H ₂ O. If the molar mass is 176.22 g/mol, what is the molecular formula?
PRACTICE: In the presence of a small amount of oxygen a combustion reaction will not only produce carbon dioxide, but
also carbon monoxide. The incomplete combustion of naphthalene, a hydrocarbon used in many dyes, produced 2.80 g CO,
4.40 g CO ₂ and 1.44 g H ₂ O. Determine its empirical formula.

CONCEPT: COMBUSTION ANALYSIS

Combustion of Non-Hydrocarbons

• A non-hydrocarbon represents a compound containing not only C and H, but also, _	and/or a	
$\hfill\Box$ Through combustion analysis, they can create gaseous products such as,	or a	molecule
EXAMPLE : A solvating agent (\mathcal{M} = 147.0 g/mol) that contains C, H, and Cl is used for spectruments of the solution of th		
STEP 1: If present, convert the grams of CO ₂ to grams of		
STEP 2: Convert the grams of H ₂ O to grams of		
STEP 3: If necessary, subtract the grams of STEPS 1 & 2 from the grams of the sample to de	etermine the 3 rd e	element.
STEP 4: Convert all the masses into		
STEP 5: Divide each mole answer by the smallest mole value in order to obtain whole number	ers for each elem	ent.
STEP 6: If you get a value of or then you can round to the nearest whole nun If you can't round, we multiply by the a factor to create whole numbers.	nber.	

CONCEPT: COMBUSTION ANALYSIS PRACTICE: A compound composed of carbon, hydrogen and nitrogen undergoes a combustion reaction to produce 264.21 g CO ₂ , 63.06 g H ₂ O and 46.4 g NO ₂ . Determine its empirical formula.
PRACTICE : The combustion of 4.16 grams of a compound which contains only C,H,O and F yields 7.7 g CO_2 and 2.52 g H_2O . Another sample of the compound with a mass of 3.63 g is found to contain 0.58 g F. What is the empirical formula of
the compound?