
CONCEPT: PERIODIC TREND: ELECTRON AFFINITY

• Electron Affinity (EA): Energy released (exothermic) from the addition of an electron to a gaseous atom or ion in _____.

- □ **Exothermic Reaction**: Reaction *releases* energy in order to create a bond.
 - More _____ electron affinity value = more exothermic reaction.
 - Exceptions: Electron affinity ____ means the element will not readily accept an electron.
- □ **Periodic Trend:** Electron affinity _____ moving from left to right across a period and going up a group.

EXAMPLE: Which of the following halogens will have the most exothermic electron affinity?

a) S

- b) Ne
- c) N

d) At

e) Br

Exceptions to Electron Affinity

- Exceptions: Elements that possess stable, symmetrical orbitals are less likely to accept an electron.
 - □ *s* subshell orbitals: most stable when totally-filled with electrons.

Be He 2s²
[He]

□ p and d subshell orbitals: most stable when half-filled or totally-filled with electrons.

CONCEPT: PERIODIC TREND: ELECTRON AFFINITY

PRACTICE: Which of the following represents the third electron affinity of Si?

b) Si (g) + 3 e⁻
$$\longrightarrow$$
 Si³⁻ (g)

c)
$$Si^{2-} + e^{-} \longrightarrow Si^{3-}(g)$$

d)
$$Si^{2+}$$
 (g) \longrightarrow Si^{3+} (g) + 3 e⁻

PRACTICE: Determine which atom in the following set has the most exothermic electron affinity: N, O, C, B, Ne

a) N

b) O

c) C

d) B

e) Ne

PRACTICE: Rank the following elements in order of increasing electron affinity: Cs, Hg, F, S