
CONCEPT: PHOTOELECTRIC EFFECT

• Einstein theorized that if a photon met an energy requirement and struck a metal surface then electrons could be ejected.

$\hfill\Box$ Binding Energy (E_B.E.): The minimum amount	of energy needed to eject an electron from a metal.
- Also known as the	_ frequency (work function) of the metal.
$\hfill\Box$ Kinetic Energy (E _{K.E.}): The energy an object h	as due to its speed or motion.
□ The Photoelectric Effect Formula: Total Energ	y (E _{Photon}) = + (surplus energy)

EXAMPLE: The binding energy of electrons on a metal surface are $7.15 \times 10^{-19} \, \text{J}$. If an outside energy source with $4.33 \times 10^{-17} \, \text{J}$ strikes the metal surface, what would be the kinetic energy of an ejected electron?

CONCEPT: PHOTOELECTRIC EFFECT

Photoelectric Effect Formula Expanded

• The formula expands when we are given the additional variables of _____ and ____.

Photoelectric Effect
Photoelectric Effect Formula (Expanded)
The energy of a photon can be seen as:
E _{photon} = +
_ <u>Ephoton</u> =•
\Box E _{B.E.} = binding energy of the metal.
$\Box E_{K.E.} = \frac{1}{2} - \bullet$
□ 1 electronvolt (eV) = J

□ If energy is given in **eV** then we must use the **conversion factor** to change units into **Joules**.

EXAMPLE: When the surface of metal is exposed to photons at a frequency of $7.13 \times 10^{16} \text{ s}^{-1}$, electrons are emitted with a maximum kinetic energy of $6.30 \times 10^{-19} \text{ J}$. Calculate the work function of the metal.

CONCEPT: PHOTOELECTRIC EFFECT
PRACTICE: A metal with a threshold frequency of $2.15 \times 10^{15} \text{ s}^{-1}$ emits an electron with a velocity of $7.03 \times 10^6 \text{ m/s}$ when
radiation of 4.88 x 10 ¹⁵ s ⁻¹ strikes the metal's surface. Calculate the mass of the electron.
PRACTICE: An ultraviolet photon with a wavelength of 320 nm strikes a metal surface. The emitted electron has a kinetic energy of 3.0 x 10^{-2} eV. What is the binding energy of the electron in kJ/mol? 1 electron volt (eV) = 1.602 x 10^{-19} J.