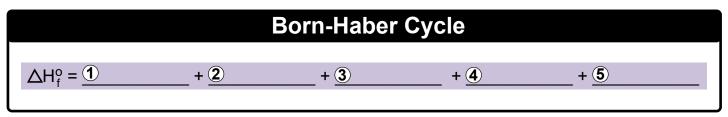

CONCEPT: BORN-HABER CYCLE


- A reaction outline that gives the steps for the formation of an ionic compound from the standard states of its elements.
 - □ Recall, a formation equation shows the standard states of elements combining to form ____ mole of product.
 - Associated with a formation equation is its enthalpy of formation ______

Na (s) +
$$\frac{1}{2}$$
 Cl₂ (g) \longrightarrow NaCl (s) $\triangle H_f^o = -411 \frac{kJ}{mol}$

• In order to calculate the enthalpy of formation, both elements must be converted into their ionic gaseous forms.

• By combining all the steps, the enthalpy of formation can be determined.

EXAMPLE: When setting up the steps of the Born-Haber Cycle for K₂O, how many ionization energies (IE) and how many electron affinities (EA) do you need?

- a) 2 IE, 0 EA
- b) 2 IE, 1 EA
- c) 1 IE, 2 EA
- d) 1 IE, 1 EA
- e) 2 IE, 2 EA

CONCEPT: BORN-HABER CYCLE

PRACTICE: Using the Born-Haber Cycle, demonstrate the formation of cesium chloride, CsCl, and calculate its enthalpy of formation.

Born-Haber Cycle Values	
Term	Value kJ/mol
$\Delta H_{Sublimation}$	79
IE ₁	376
ΔH _{B.E.}	122
EA ₁	- 349
$\Delta extsf{H}_{Latt}^{o}$	- 661

PRACTICE: Calculate the lattice energy for the following formation equation:

Ba (s) +
$$Br_2$$
 (g) \longrightarrow BaBr₂ (s)

Born-Haber Cycle Values	
Term	Value kJ/mol
ΔH _{Sublimation}	178
IE ₁	503
IE ₂	965
EA ₁	- 325
ΔH _{B.E.}	193
ΔH°_f	- 909