
CONCEPT: INTRO TO CHEMICAL EQUILIBRIUM

- Most chemical reactions never go to ______, instead reach a chemical equilibrium.
 - □ Chemical Equilibrium: dynamic process where rate of forward and reverse reactions are _____
 - Dynamic process: reaction does not simply stop but keeps going in both directions
 - These reactions are _____ and use a double arrow (_____).

- Chemical equilibrium can be _____genous or ____genous
 - □ **Homogenous equilibrium:** reactants and products are present in _____ state of matter (phase)
 - □ Heterogenous equilibrium: reactants and products are present in _____ phases

EXAMPLE: Describe what happens when reaction reaches chemical equilibrium.

- a) reaction stops
- b) reactants form products as fast as products form reactants
- c) the collision frequencies of products and reactants are identical
- d) rates of forward and reverse reactions are equal to zero

PRACTICE: Which of the following does not represent a heterogenous equilibrium?

I)
$$CH_4(g) + 2 O_2(g) \longrightarrow CO_2(g) + 2 H_2O(g)$$

II)
$$CO_2(g) + C(s) \rightleftharpoons 2CO(g)$$

III)
$$2 H_2 O(I) \longrightarrow 2 H_2(g) + O_2(g)$$

IV) CH₃COOH (aq) + H₂O (I)
$$\longrightarrow$$
 CH₃COO- (aq) + H₃O+ (aq)

- a) Only I)
- b) Only II)
- c) Only III)
- d) Only IV)
- e) Both I) & IV)
- f) Both II) & III)