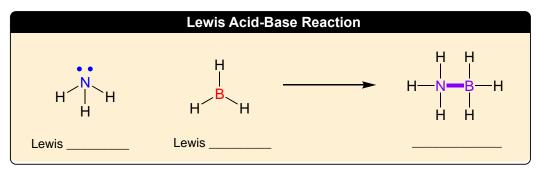
## **CONCEPT:** BORANE REACTIONS

- Reactions are driven by borane's \_\_\_\_\_ electron-deficiency and diborane's \_\_\_\_ reactivity.
  - □ Will cover 2 types of reactions: reacting with (1) \_\_\_\_\_\_ & (2) \_\_\_\_\_ Reactions.

## (1) Reaction with H<sub>2</sub>O

- As a result of their \_\_\_\_\_ reactivity, diboranes readily react with liquid water.
  - □ Gaseous diborane reacts with water to produce \_\_\_\_\_ acid and hydrogen gas.


Reaction with 
$$H_2O$$

$$_B_2H_6 (g) + _H_2O (I) \longrightarrow _H_3\underline{BO_3} (s) + _H_2 (g)$$

**EXAMPLE**: If the 466 kJ of energy is released for every mole of diborane reacting with water, how much energy would be released when 150.0 g diborane is submerged into excess water?

## (2) Lewis Acid-Base Reaction

- Recall, a Lewis Acid is an electron pair \_\_\_\_\_ and a Lewis Base is an electron pair \_\_\_\_\_.
  - □ Boranes because of their \_\_\_\_\_ electron-deficiency are considered as Lewis \_\_\_\_\_.



□ Adduct: \_\_\_\_\_ of Lewis base and acid reaction.

**EXAMPLE**: Draw the adduct product formed from the reaction between borane and a hydroxide ion.