CONCEPT: NUCLEAR BINDING ENERGY

Mass to Energy Conversion

- If the mass defect is known then its conversion to energy can be determined.
 - □ **Nuclear Binding Energy** (____): the energy that is _____ during the formation of an isotope.
 - Recall, the process can also be seen as energy being _____ to break up the isotope.
 - □ The ____ the nuclear binding energy, the more _____ the nucleus.

Nuclear Binding Energy		
The formula for the nuclear binding energy per mole of a radioisotope.		
		□ _ E _ = Nuclear Binding Energy in J
	E =•	□ = Mass Defect in kg
		□ = Speed of Light as s
		$\Box \underline{\hspace{1cm}} = \frac{kg \bullet m^2}{s^2}$

EXAMPLE: Calculate the nuclear binding energy (in MeV/mole) of beryllium-10. The atomic mass of Be-10 is 10.0135347 amu.

STEP 0: Repeat STEPS 1 to 3 of the previous topic to calculate the mass defect of the radioisotope.

STEP 4: Plug in the values into the nuclear binding energy formula to solve for the missing variable.

	Conversion Factors
	1 amu = $1.66 \times 10^{-27} \text{ kg}$
	1 MeV = 1.60 x 10 ⁻¹³ J
1.	

CONCEPT: NUCLEAR BINDING ENERGY

PRACTICE: Calcium-41 is commonly used radioisotope in the study of osteoporosis. If calcium-41 has a mass of 40.962278 amu, determine the nuclear binding energy per nucleon in MeV. (1 amu = 1.66×10^{-27} kg). (1 MeV = 1.60×10^{-13} J)

PRACTICE: Calculate the mass defect (in g/mol) for the formation of a helium-6 nucleus, and calculate the binding energy in (MeV)/nucleon. (1 amu = $1.66 \times 10^{-27} \text{ kg}$). (1 neutron = $1.00866 \times 10^{-10} \times 10^{-10$

$$2_{1}^{1}H + 4_{0}^{1}n \longrightarrow {}_{2}^{6}He$$