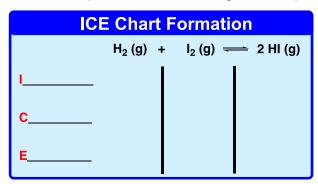
Calculating Equilibrium Amount

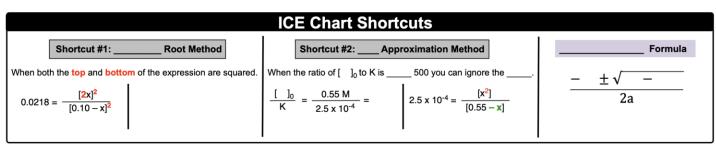

- An ICE (I_____, C____, E_____) Chart is a table used to simplify the calculations of _____ reactions.
 - □ Used when missing _____ equilibrium amount for the compounds in a balanced equilibrium reaction.
 - □ The units of an ICE Chart are either in _____ (K_o) or _____ (K_c).

EXAMPLE: The equation for the formation of hydrogen iodide from H_2 and I_2 is given as:

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

The value of K_c for the reaction is 0.0218 at 25°C. What is the equilibrium concentration of HI in a sealed reaction vessel, if the initial concentrations of H_2 and I_2 are both 0.10 M and initially there is no HI present?

STEP 1: Setup an ICE Chart if missing _____ equilibrium amount for the compounds in the balanced equilibrium reaction.


STEP 2: Using the _____ Row, place the amount given for any compound.

STEP 3: We _____ reactants to _____ products.

- $\hfill \square$ Using the _____ Row, place an ____ for the reactants and a ____ for the products.
 - The _____ of the compound must be placed before the ____ variable.

STEP 4: Using the _____ Row, setup the equilibrium constant expression and solve.

- □ Check if a shortcut can be utilized to avoid the _____ formula.
 - If both shortcuts _____ then it must be used.

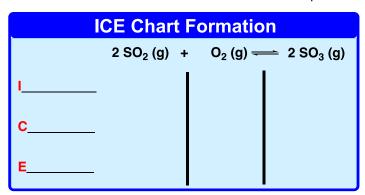
PRACTICE: At a given temperature the gas phase reaction: N_2 (g) + O_2 (g) \rightleftharpoons 2 NO (g) has an equilibrium constant of 4.18 x 10⁻⁷. What will be the concentration of NO at equilibrium if 2.00 moles of nitrogen and 6.00 moles oxygen are allowed to come to equilibrium in a 2.0 L flask?

PRACTICE: Consider the following reaction:

$$COBr_2(g) \rightleftharpoons CO(g) + Br_2(g)$$

A reaction mixture initially contains 0.15 atm COBr₂. Determine the equilibrium concentration of CO if K_p for the reaction at 25° C is 4.08.

Calculating Equilibrium Constant


- Recall, the equilibrium constant (K) is a _____ of product to reactant amounts at equilibrium.
 - □ When only given ____ equilibrium amount the equilibrium constant K can be determined.

EXAMPLE: An important reaction in the formation of acid rain is,

$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

Initially, 0.30 M SO $_2$ and 0.20 M O $_2$ are mixed and allowed to react in an evacuated flask at 340°C. When an equilibrium is established the equilibrium amount of SO $_3$ was found to be 0.0150 M. Calculate the equilibrium constant, K_c , for the reaction at 340°C.

Follow the STEPS 1 to 4 in order to determine the equilibrium constant expression for the reaction.

STEP 5: Make the given equilibrium amount _____ to the value in the **EQUILIBRIUM ROW** of the compound to solve for x.

□ Plug the value for x into the equilibrium constant expression to solve for _____.

PRACTICE: At a certain temperature, 0.810 mol NO is placed in a 5.00 L container. At equilibrium, $0.075 mol N_2$ is present. Calculate K_c .

$$2 \text{ NO}(g) \rightleftharpoons N_2(g) + O_2(g)$$

PRACTICE: When 0.600 atm of NO_2 was allowed to come to equilibrium the total pressure was 0.875 atm. Calculate the K_p of the reaction.