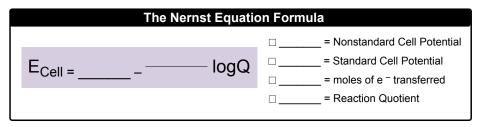
CONCEPT: CELL POTENTIAL: THE NERNST EQUATION

The Reaction Quotient

- Recall, the reaction quotient (___) is _____ of product to reactant concentrations at a particular time.
 - □ It can be calculated by setting up an expression and ignoring ____ and ____.
 - □ For electrochemical cells, it helps find the potential at the exact moment the cell circuit is connected.

EXAMPLE: What is the reaction quotient for the following redox reaction with the given concentrations?


$$Pb^{2+}$$
 (aq) + 2 K (s) \longrightarrow Pb (s) + 2 K⁺ (aq)

$$[Pb^{2+}] = 0.0880 M$$

$$[K^+] = 0.0015 M$$

Calculate Nonstandard Cell Potential

- Recall, standard cell potential is calculated when ions in half-cells have values of _____ M, ____ atm and pH = ____.
 - ☐ The **Nernst Equation** is used to find the cell potential when ion concentration(s) _____ M.

EXAMPLE: Calculate the cell potential for a reaction at 25.0°C when given the following ionic concentrations and standard reduction potentials.

$$2 \text{ Co}^{3+} \text{ (aq)} + 3 \text{ Mg (s)} \longrightarrow 2 \text{ Co (s)} + 3 \text{ Mg}^{2+} \text{ (aq)}$$
 [Co³⁺] = 1.0 M [Mg²⁺] = 0.0033 M

$$[Co^{3+}] = 1.0 \text{ M} \quad [Mg^{2+}] = 0.0033 \text{ M}$$

Standard Reduction Potentials

$$Co^{3+}$$
 (aq) + 3 e - — Co (s)

$$E^{\circ}_{red} = + 1.82 \text{ V}$$

$$Mg^{2+}(aq) + 2 e^{-} \longrightarrow Mg(s)$$

$$E^{\circ}_{red} = -2.37 \text{ V}$$

CONCEPT: CELL POTENTIAL: THE NERNST EQUATION

PRACTICE: If $[Br^-] = 0.010$ M and $[Al^{3+}] = 0.022$ M, predict whether the following reaction would proceed spontaneously as written at 25°C:

Al (s) + Br₂ (l)
$$\longrightarrow$$
 Al³⁺ (aq) + Br⁻ (aq)

Standard Reduction Potentials

$$Al^{3+}(aq) + 3 e^{-}$$
 Al (s) $E^{\circ}_{red} = -1.66 \text{ V}$

$$Br_2 (I) + 2 e^- \longrightarrow 2 Br^- (aq) E^*_{red} = + 1.09 V$$

PRACTICE: Determine $[Fe^{2+}]$ for the following galvanic cell at 25°C if given $[Sn^{2+}] = 0.072$ M, $[Fe^{3+}] = 0.0219$ M, and $[Sn^{4+}] = 0.00345$ M.

$$Sn^{2+}$$
 (ag) + 2 Fe³⁺ (ag) \longrightarrow Sn^{4+} (ag) + 2 Fe²⁺ (ag) E_{cell} = + 0.68 V

Standard Reduction Potentials

$$Sn^{4+}(aq) + 2 e^{-} \longrightarrow Sn^{2+}(aq)$$

$$E^{\circ}_{red} = + 0.151 \text{ V}$$

$$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$$

$$E_{red}^{\circ} = + 0.771 \text{ V}$$