Standard Cell Potential (): the			
` '	of the reduction	on potential (E° _{red}) in volts between two half-cells.
□ Standard refers to the ions within	n the half-cells having value	es of M,	atm and pH =
□ Volts (): represents the amou	unt of work done as the elec	ctrons travel from o	one electrode to another in
() is the	SI unit for electric charge.		
$\hfill\Box$ The standard cell potential of an	electrochemical cell is calcu	ulated by the formi	ula:
	Standard Cell Potentia		
EXAMPLE: What is E° _{cell} for a voltaic cell	based on the following red	uction reactions in	which the copper electrode is
the cathode and the zinc electrode is the	anode?		
Zn^{2+} (aq) + 2 e	Zn (s)	E° _{red} = -	0.7621
Cu ²⁺ (aq) + 2 e	-	$E^{\circ}_{red} = +$	0.3394
Recall, a standard cell potential value			50 W . 50 W
□ For a galvanic (voltaic) cell, catho			_
- For an electrolytic cell cathode -	- ⊢° and anodo		
1 of all electrolytic cell, cathode -		=E*I	esulting in E°cell 0.
EXAMPLE : Given the following redox rea	action: Ce (s) + Al³+ (aq) –		
EXAMPLE : Given the following redox rea potential when given the following half-rea	action: Ce (s) + Al³+ (aq) –		
EXAMPLE : Given the following redox real potential when given the following half-real Standard Reduction Potentials	action: Ce (s) + Al ³⁺ (aq) —		
EXAMPLE : Given the following redox real potential when given the following half-real Standard Reduction Potentials Ce ³⁺ + 3 e - Ce (s)	action: Ce (s) + Al ³⁺ (aq) – actions. $E^{\circ}_{red} = -2.336$		
EXAMPLE : Given the following redox real potential when given the following half-real Standard Reduction Potentials	action: Ce (s) + Al ³⁺ (aq) —		
EXAMPLE: Given the following redox real potential when given the following half-real Standard Reduction Potentials Ce ³⁺ + 3 e - Ce (s) Al ³⁺ + 3 e - Al (s)	action: Ce (s) + Al ³⁺ (aq) – actions. $E^{\circ}_{red} = -2.336$ $E^{\circ}_{red} = -1.677$	→ Al (s) +	Ce³+ (aq). Find its standard cell
EXAMPLE : Given the following redox real potential when given the following half-real Standard Reduction Potentials Ce ³⁺ + 3 e - Ce (s)	action: Ce (s) + Al ³⁺ (aq) — actions. $E^{\circ}_{red} = -2.336$ $E^{\circ}_{red} = -1.677$ ermine which species is	→ Al (s) +	Ce³+ (aq). Find its standard cell

STEP 2: Use the standard cell potential formula to find the final answer.

CONCEPT: CELL POTENTIAL: STANDARD

PRACTICE: Calculate the standard cell potential of an electrolytic cell when given the following half reactions.

Standard Reduction Potentials

$$Fe^{3+}(aq) + e^{-}$$
 Fe²⁺ (aq) $E^{\circ}_{red} = + 0.769 \text{ V}$

Li⁺ (aq) +
$$e^-$$
 Li (s) $E^{\circ}_{red} = -3.04 \text{ V}$

PRACTICE: Use the standard half-cell potentials listed below to calculate the standard cell potential for the following reaction occurring in an electrochemical cell at 25°C.

$$3 \text{ Cl}_2(g) + 2 \text{ Fe (s)} \longrightarrow 6 \text{ Cl}^-(aq) + 2 \text{ Fe}^{3+}(aq)$$

Standard Reduction Potentials

$$Cl_2(g) + 2 e^- \longrightarrow 2 Cl^-(aq)$$

$$E_{red}^{\circ} = + 1.396 \text{ V}$$

$$Fe^{3+}$$
 (aq) + 3 e⁻ — Fe (s)

$$E^{\circ}_{red} = -0.040 \text{ V}$$

PRACTICE: Predict whether the following reaction will occur as written based on the calculated E°cell.

$$Ag^{+}(aq) + Au(s) \longrightarrow Ag(s) + Au^{3+}(aq)$$

Standard Reduction Potentials

$$Ag^+(aq) + e^- \longrightarrow Ag(s)$$

$$E^{\circ}_{red} = + 0.80 \text{ V}$$

$$Au^{3+}$$
 (aq) + 3 e⁻ — Au (s)

$$E^{\circ}_{red} = + 1.50 \text{ V}$$