CONCEPT: FREEZING POINT DEPRESSION

 The phenomenon when adding a solute to a pure solvent results in of the freezing point of the solvent. Normal Freezing Point (): The freezing point of the solvent the addition of the solute. Freezing Point of Solution (): The freezing point of the solvent the addition of the solute. 				
Freezing Point Depression				
A Freezing Point Depression Formula	© Variables		Constants	
ΔT _f =•• B Freezing Point of Solution FP = FP —	□ Δ T _f = Change in Freezing Point □ = van't Hoff Factor □ = Freezing Point Constant of Solvent in □ = molality of solution in	Solvent Water Benzene, C ₆ H ₆ Chloroform, CHC Ethanol, C ₂ H ₅ OH	l ₃ - 63.5	1.86 5.12 0.68 0.99

EXAMPLE: Calculate the freezing point of a solution containing 110.7 g glucose, C₆H₁₂O₆, dissolved in 302.6 g water.

PRACTICE: How many moles of ethylene glycol, $C_2H_6O_2$, must be added to 1,000 g of water to form a solution that has a freezing point of $-10^{\circ}C$?

a) 334 moles

b) 5.4 moles

c) 3.2 moles

d) 200 moles

CONCEPT: FREEZING POINT DEPRESSION

PRACTICE: An ethylene glycol solution contains 28.3 g of ethylene glycol, C₂H₆O₂ in 97.2 mL of water. Calculate the freezing point of the solution. The density of water 1.00 g/mL.

a) -8.72 °C

b) -0.848 °C

c) -0.541 °C

d) -17.4 °C

PRACTICE: When 825 g of an unknown is dissolved in 3.45 L of water, the freezing point of the solution is decreased by 2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.

a) 154 g/mol

b) 42.4 g/mol

c) 44.5 g/mol

d) 159 g/mol